Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2021_22_1_a3, author = {V. A. Alekseev and Y. G. Smetanin}, title = {On the possibility of a periodic word reconstruction from the subwords of fixed length}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {57--66}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a3/} }
TY - JOUR AU - V. A. Alekseev AU - Y. G. Smetanin TI - On the possibility of a periodic word reconstruction from the subwords of fixed length JO - Čebyševskij sbornik PY - 2021 SP - 57 EP - 66 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a3/ LA - ru ID - CHEB_2021_22_1_a3 ER -
V. A. Alekseev; Y. G. Smetanin. On the possibility of a periodic word reconstruction from the subwords of fixed length. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a3/
[1] Leontev V. K., Smetanin Yu. G., “O vosstanovlenii vektorov po naboru ikh fragmentov”, Doklady Akademii nauk, 302:6 (1988), 1319–1322 | Zbl
[2] Manvel B. et al., “Reconstruction of sequences”, Discrete Mathematics, 94:3 (1991), 209–219 | DOI | MR | Zbl
[3] Skiena S. S., Sundaram G., “Reconstructing strings from substrings”, Journal of Computational Biology, 2:2 (1995), 333–353 | DOI | MR
[4] Leontev V. K., “Zadachi vosstanovleniya slov po fragmentam i ikh prilozheniya”, Diskretnyi analiz i issledovanie operatsii, 2:2 (1995), 26–48 | MR
[5] Gusfield D., “Algorithms on stings, trees, and sequences: Computer science and computational biology”, Acm Sigact News, 28:4 (1997), 41–60 | DOI | MR
[6] Krasikov I., Roditty Y., “On a reconstruction problem for sequences”, Journal of combinatorial theory, Series A, 77:2 (1997), 344–348 | DOI | MR | Zbl
[7] Scott A. D., “Reconstructing sequences”, Discrete Mathematics, 175:1-3 (1997), 231–238 | DOI | MR | Zbl
[8] Borwein P., Erdélyi T., Kós G., “Littlewood-type problems on [0, 1]”, Proceedings of the London Mathematical Society, 79:1 (1999), 22–46 | DOI | MR | Zbl
[9] Levenshtein V. I., “Efficient reconstruction of sequences from their subsequences or supersequences”, Journal of Combinatorial Theory, Series A, 93:2 (2001), 310–332 | DOI | MR | Zbl
[10] Dud{\i}k M., Schulman L. J., “Reconstruction from subsequences”, Journal of Combinatorial Theory, Series A, 103:2 (2003), 337–348 | DOI | MR | Zbl
[11] Batu T. et al., Reconstructing strings from random traces, Departmental Papers (CIS), 2004, 173 pp. | MR
[12] Kannan S., McGregor A., “More on reconstructing strings from random traces: insertions and deletions”, Proceedings International Symposium on Information Theory, ISIT 2005, IEEE, 2005, 297–301
[13] Lin J. et al., “Experiencing SAX: a novel symbolic representation of time series”, Data Mining and knowledge discovery, 15:2 (2007), 107–144 | DOI | MR
[14] Smetanin Y., Ul'yanov M., Determining the characteristics of Kolmogorov complexity of time series: an approach based on symbolic descriptions, 2013