On the possibility of a periodic word reconstruction from the subwords of fixed length
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 57-66

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem being considered is the reconstruction of periodic words from a finite alphabet using multiset of fixed length subwords. This is a special case of a more general problem of reconstruction with incomplete information and under restrictions on the words in question. For some constraints on the multiset of subwords, conditions for possibility of reconstruction are obtained. It is shown that a periodic word with period $p$ is uniquely determined by the multiset of its subwords of length $k \geq \left\lfloor\frac{16}{7} \sqrt{p}\right\rfloor + 5$. For a word consisting of a non-periodic prefix of length $q$ and a periodic suffix with period $p$, repeated $l$ times, a similar estimate is obtained: $k \geq \left\lfloor\frac{16}{7} \sqrt{P}\right\rfloor + 5$, provided $l \geq q^{\left\lfloor\tfrac{16}{7} \sqrt{P}\right\rfloor + 5}$ where $P = \max(p, q)$.
Keywords: word reconstruction, multiset of subwords, subwords of fixed length, periodic word.
@article{CHEB_2021_22_1_a3,
     author = {V. A. Alekseev and Y. G. Smetanin},
     title = {On the possibility of a periodic word reconstruction from the subwords of fixed length},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {57--66},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a3/}
}
TY  - JOUR
AU  - V. A. Alekseev
AU  - Y. G. Smetanin
TI  - On the possibility of a periodic word reconstruction from the subwords of fixed length
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 57
EP  - 66
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a3/
LA  - ru
ID  - CHEB_2021_22_1_a3
ER  - 
%0 Journal Article
%A V. A. Alekseev
%A Y. G. Smetanin
%T On the possibility of a periodic word reconstruction from the subwords of fixed length
%J Čebyševskij sbornik
%D 2021
%P 57-66
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a3/
%G ru
%F CHEB_2021_22_1_a3
V. A. Alekseev; Y. G. Smetanin. On the possibility of a periodic word reconstruction from the subwords of fixed length. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 57-66. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a3/