Mathematical regularities of the sliding friction process of a porous material based on iron impregnated with lubricating oil with dispersed particles of fluorinated graphene
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 378-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the results of a study of the sliding friction process of a porous material based on iron impregnated with lubricating oil with dispersed particles of fluorinated graphene. It is established that the regularities of the kinetics of external sliding friction have a sigmoidal and sigmoidal-linear character. Experimental results have been obtained showing that with an increase in the concentration of aggregates from flakes of fluorinated graphene in the lubricating oil, the average force and coefficient of friction decrease, while a good anti-friction effect is observed.
Keywords: friction regularities, mathematical regularities, porous material, lubricant composition, friction, fluorinated graphene.
@article{CHEB_2021_22_1_a25,
     author = {A. D. Breki and S. G. Chulkin and N. M. Dobrovolsky and O. V. Kuzovleva and A. E. Gvozdev and E. V. Mazin},
     title = {Mathematical regularities of the sliding friction process of a porous material based on iron impregnated with lubricating oil with dispersed particles of fluorinated graphene},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {378--389},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a25/}
}
TY  - JOUR
AU  - A. D. Breki
AU  - S. G. Chulkin
AU  - N. M. Dobrovolsky
AU  - O. V. Kuzovleva
AU  - A. E. Gvozdev
AU  - E. V. Mazin
TI  - Mathematical regularities of the sliding friction process of a porous material based on iron impregnated with lubricating oil with dispersed particles of fluorinated graphene
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 378
EP  - 389
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a25/
LA  - ru
ID  - CHEB_2021_22_1_a25
ER  - 
%0 Journal Article
%A A. D. Breki
%A S. G. Chulkin
%A N. M. Dobrovolsky
%A O. V. Kuzovleva
%A A. E. Gvozdev
%A E. V. Mazin
%T Mathematical regularities of the sliding friction process of a porous material based on iron impregnated with lubricating oil with dispersed particles of fluorinated graphene
%J Čebyševskij sbornik
%D 2021
%P 378-389
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a25/
%G ru
%F CHEB_2021_22_1_a25
A. D. Breki; S. G. Chulkin; N. M. Dobrovolsky; O. V. Kuzovleva; A. E. Gvozdev; E. V. Mazin. Mathematical regularities of the sliding friction process of a porous material based on iron impregnated with lubricating oil with dispersed particles of fluorinated graphene. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 378-389. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a25/

[1] Breki A. D., Tribotekhnicheskie svoistva modifitsirovannykh smazochnykh masel, Dissertatsiya na soiskanie uchenoi stepeni kandidata tekhnicheskikh nauk, Institut problem mashinovedeniya Rossiiskoi akademii nauk, Sankt-Peterburg, 2011, 161 pp.

[2] Novoselov K. S., Geim A. K., Morozov S. V. et. al., “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306:5696 (2004), 666–669 | DOI

[3] S. V. Tkachev, E. Yu. Buslaeva, S. P. Gubin, “Grafen - novyi uglerodnyi nanomaterial”, Neorganicheskie materialy, 47:1 (2011), 5–14

[4] S. V. Tkachev, E. Yu. Buslaeva, A. V. Naumkin, S. L. Kotova, I. V. Laure, S. P. Gubin, “Grafen, poluchennyi vosstanovleniem oksida grafena”, Neorganicheskie materialy, 48:8 (2012), 909

[5] Geim A. K., Novoselov K. S., “The Rise of Graphene”, Nature Mater., 6:3 (2007), 183–191 | DOI

[6] S. P. Gubin, S. V. Tkachev, Grafen i rodstvennye nanoformy ugleroda, Knizhnyi dom «Librokom», M., 2012, 104 pp.

[7] A. I. Volokitin, “Kvantovoe trenie i grafen”, Priroda, 2011, no. 9 (1153), 13–21

[8] N.I. Legkonogikh, “Smazochnaya sposobnost grafena pri ispolzovanii v parakh treniya «stal-zhelezo» i «stal-bronza»”, Avtomatizirovannoe proektirovanie v mashinostroenii, 2020, no. 8, 48–50

[9] Novikova A. A., Burlakova V. E., Varavka V. N., Uflyand I. E., Drogan E. G., Irkha V. A., “Influence of glycerol dispersions of graphene oxide on the friction of rough steel surfaces”, Journal of Molecular Liquids, 284 (2019), 1–11 | DOI

[10] Berman D., Erdemir A., Sumant A.V., “Few layer graphene to reduce wear and friction on slidingsteel surfaces”, Carbon, 54 (2013), 454–459 | DOI

[11] Restuccia P., Righi M. C., “Tribochemistry of graphene on iron and its possible role in lubrication of steel”, Carbon, 106 (2016), 118–124 | DOI

[12] Obraztsova E. A., Osadchy A. V., Obraztsova E. D., Lefrant S., Yaminsky I. V., “Statistical Analysis of Atomic Force Microscopy and Raman Spectroscopy Data for Estimation of Graphene Layer Numbers”, Phys. Stat. Sol. B, 245:10 (2008), 2055–2059 | DOI

[13] Breki A., Nosonovsky M., “Ultraslow frictional sliding and the stick-slip transition”, Applied Physics Letters, 113:24 (2018), 241602 | DOI

[14] Breki A. D., Gvozdev A. E., Kolmakov A. G., “Semiempirical mathematical models of the pivoting friction of SHKH15 steel over R6M5 steel according to the ball-plane scheme with consideration of wear”, Inorganic Materials: Applied Research, 10:4 (2019), 1008–1013 | DOI

[15] Breki A. D., Vasilyeva E. S., Tolochko O. V., Didenko A. L., Nosonovsky M., “Frictional properties of a nanocomposite material with a linear polyimide matrix and tungsten diselinide nanoparticle reinforcement”, Journal of Tribology, 141:8 (2019), 082002 | DOI

[16] Breki A. D., Kolmakov A. G., Gvozdev A. E., Sergeev N. N., “Investigation of the pivoting friction of SHKH15 steel over R6M5 and 10R6M5-MP steel with the use of mathematical modeling”, Inorganic Materials: Applied Research, 10:4 (2019), 927–932 | DOI

[17] Breki A. D., Gvozdev A. E., Kolmakov A. G., Starikov N. E., Provotorov D. A., Sergeyev N. N., Khonelidze D. M., “On friction of metallic materials with consideration for superplasticity phenomenon”, Inorganic Materials: Applied Research, 8:1 (2017), 126–129 | DOI

[18] Breki A. D., Gvozdev A. E., Kolmakov A. G., “Application of generalized pascal triangle for description of oscillations of friction forces”, Inorganic Materials: Applied Research, 8:4 (2017), 509–514 | DOI | MR

[19] Breki A. D., Nosonovsky M., “Einsteins viscosity equation for nanolubricated friction”, Langmuir: the ACS journal of surfaces and colloids, 34:43 (2018), 12968–12973 | DOI

[20] Rebrova I. Yu., Chubarikov V. N., Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevskii sbornik, 19:4 (68) (2018), 118–176 | DOI | MR | Zbl

[21] Dobrovolskii N. N., Dobrovolskaya L. P., Seregina N. K., Bocharova O. E., Algoritmy vychisleniya optimalnykh koeffitsientov, Monografiya, ed. N. M. Dobrovolskii, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2016, 223 pp.

[22] Dobrovolskaya L. P., Shelobaev S. I., “Teoretiko-chislovoi metod v ekonometrike”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVI Mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu so dnya rozhdeniya professora Mishelya Deza, Tul. gos. ped. un-t im. L. N. Tolstogo, Tula, 2019, 280–283

[23] Nikitin A. N., Rusakova E. I., Parkhomenko Eh. I., Ivankina T. I., Dobrovol'skij N. M., “Reconstruction of Paleotectonic Stresses Using Data on Piezoelectric Texstures of Rocks”, Izvestiya Earth Physics, 24:9 (1988), 728–734