The convergence condition for improper short integrals in terms of Newton polytopes
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 328-339.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers multidimensional improper integrals of functions that are the product of generalized polynomials in some degrees. Such integrals are found in many branches of mathematics and theoretical physics. In particular, they include Feynman integrals arising in the study of various objects of quantum field theory. The exact calculation of these integrals is a difficult and not always possible task; therefore, determining the conditions for their convergence and obtaining their asymptotic expansion in one of the parameters is of considerable practical interest. The convergence conditions for the integrals considered in the article can still be used, for example, in the study of multiple series representing the sum of the values of a rational function at the nodes of an integer lattice. The article considers the problem when the integration area is $ {\mathbb R} ^ {n} _ {+} $, and the generalized polynomials included in the integrand are either positive everywhere except zero or have positive coefficients. The convergence set of these integrals is described and the equivalence of the convergence condition to the condition on the Newton polytopes of polynomials in integrands is proved. The convergence criterion proved in the paper coincides in formulation with the corresponding result of the work of A. K. Tsikh and T. O. Ermolaeva, but it was obtained by other methods and for a slightly wider set of integrands. The proofs of the statements in the paper are based on the simplest properties of convex polytopes and basic facts from the theory of improper multiple integrals.
Keywords: convergence of improper multiple integrals, Newton polytopes.
@article{CHEB_2021_22_1_a21,
     author = {T. Yu. Semenova},
     title = {The convergence condition for improper short integrals in terms of {Newton} polytopes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {328--339},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a21/}
}
TY  - JOUR
AU  - T. Yu. Semenova
TI  - The convergence condition for improper short integrals in terms of Newton polytopes
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 328
EP  - 339
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a21/
LA  - ru
ID  - CHEB_2021_22_1_a21
ER  - 
%0 Journal Article
%A T. Yu. Semenova
%T The convergence condition for improper short integrals in terms of Newton polytopes
%J Čebyševskij sbornik
%D 2021
%P 328-339
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a21/
%G ru
%F CHEB_2021_22_1_a21
T. Yu. Semenova. The convergence condition for improper short integrals in terms of Newton polytopes. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 328-339. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a21/

[1] Khua R., Teplits V., Gomologii i feinmanovskie integraly, Mir, M., 1969

[2] Fam F., Vvedenie v topologicheskie issledovaniya osobennostei Landau, Mir, M., 1967

[3] Beneke M., Smirnov V. A., “Asymptotic expansion of Feynman integrals near threshold”, Nuclear Physics B, 522 (1998), 321–344 | DOI | MR

[4] Pak A., Smirnov A. V., “Geometric approach to asymptotic expansion of Feynman integrals”, European Physical Journal C, 71 (2011), 1626–1631 | DOI | MR

[5] Lee R. N., Pomeransky A. A., “Critical points and number of master integrals”, Journal of High Energy Physics, 165 (2013), 1311–1326 | MR

[6] Semenova T. Yu., “Asimptotika integralov Feinmana v odnomernom sluchae”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika i mekhanika, 2019, no. 4, 46–50

[7] Semenova T. Yu., “Asymptotic Series for a Feynman Integral in the One-Dimensional Case”, Russian Journal of Mathematical Physics, 27:1 (2020), 126–136 | DOI | MR | Zbl

[8] Zubchenkova E. V., “Integralnyi priznak skhodimosti nekotorykh kratnykh ryadov”, Zhurnal SFU. Seriya Matematika i fizika, 4:3 (2011), 344–349

[9] Zubchenkova E. V., “Ob integralnom priznake skhodimosti dlya mnogomernykh ryadov Dirikhle”, Sibirskie elektronnye matematicheskie izvestiya, 2014, no. 11, 76–86 | MR | Zbl

[10] Semenova T. Yu., Smirnov A. V., Smirnov V. A., “On the status of expansion by regions”, European Physical Journal C, 79 (2019), 136–147 | DOI | MR

[11] Tsikh A. K., “Integraly ot ratsionalnykh funktsii po prostranstvu $R^n$”, DAN SSSR, 307:6 (1989), 1325–1329

[12] Ermolaeva T. O., Tsikh A. K., “Integrirovanie ratsionalnykh funktsii po $R^n$ s pomoschyu toricheskikh kompaktifikatsii i mnogomernykh vychetov”, Matematicheskii sbornik, 187:9 (1996), 45–64 | DOI | MR | Zbl

[13] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[14] Aleksandrov A. D., Vypuklye mnogogranniki, Mir, M., 1950 | MR

[15] Brensted A., Vvedenie v teoriyu vypuklykh mnogogrannikov, Mir, M., 1988

[16] Grünbaum B., Convex polytopes, Interscience Publ, London, 1967 | MR | Zbl

[17] Khardi G., Litlvud Dzh., Polia G., Neravenstva, URSS, M., 2008