Moderately partial algebras whose equivalence relations are congruences
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 292-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider partial algebras whose equivalence relations are congruences. The problem of description of such partial algebras can be reduced to the problem of description of partial $n$-ary groupoids with the similar condition. In this paper a concept of moderately partial operation is used. A description is given for the moderately partial operations preserving any equivalence relation on a fixed set. Let $A$ be a non-empty set, $f$ be a moderately partial operation, defined on $A$ (i.e. if we fix all of the arguments of $f$, except one of them, we obtain a new partial operation $\varphi$ such that its domain $\mathrm{dom}\, \varphi$ satisfies the condition $|\mathrm{dom}\, \varphi| \ge 3$). Let any equivalence relation on the set $A$ be stable relative to $f$ (in the other words, the congruence lattice of the partial algebra $(A,\{f\})$ coinsides the equivalence relation lattice on the set $A$). In this paper we prove that in this case the partial operation $f$ can be extended to a full operation $g$, also defined on the set $A$, such that $g$ preserves any equivalence relation on $A$ too. Moreover, if the arity of the partial operation $f$ is finite, then either $f$ is a partial constant (i.e. $f(x) = f(y)$ for all $x,y \in \mathrm{dom}\, f$), or $f$ is a partial projection (there is an index $i$ such that all of the tuples $x = (x_1, ..., x_n) \in \mathrm{dom}\, f$ satisfy the condition $f(x_1, ..., x_i, ..., x_n) = x_i$).
Keywords: moderately partial algebra, partial infinite-ary groupoid, congruence lattice, equivalence relation lattice.
@article{CHEB_2021_22_1_a19,
     author = {A. V. Reshetnikov},
     title = {Moderately partial algebras whose equivalence relations are congruences},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {292--303},
     year = {2021},
     volume = {22},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a19/}
}
TY  - JOUR
AU  - A. V. Reshetnikov
TI  - Moderately partial algebras whose equivalence relations are congruences
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 292
EP  - 303
VL  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a19/
LA  - ru
ID  - CHEB_2021_22_1_a19
ER  - 
%0 Journal Article
%A A. V. Reshetnikov
%T Moderately partial algebras whose equivalence relations are congruences
%J Čebyševskij sbornik
%D 2021
%P 292-303
%V 22
%N 1
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a19/
%G ru
%F CHEB_2021_22_1_a19
A. V. Reshetnikov. Moderately partial algebras whose equivalence relations are congruences. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 292-303. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a19/

[1] Galvin F., Horn A., “Operations preserving all equivalence relations”, Proc. Amer. Math. Soc., 24:3 (1970), 521–523 | DOI | MR | Zbl

[2] Reshetnikov A. V., “O chastichnykh beskonechnoarnykh gruppoidakh, u kotorykh kazhdoe otnoshenie ekvivalentnosti yavlyaetsya kongruentsiei”, Informatika i kibernetika, 20:2 (2020), 48–58

[3] Grätzer G., Universal algebra, Second Edition, 2nd ed. with updates, Springer, New York, 2008, 586 pp. ; Second Edition, Springer Science+Business Media, LLC, 1979 | MR | Zbl | Zbl

[4] Kon P., Universalnaya algebra, Mir, M., 1968, 351 pp. | MR

[5] Mitsch H., “Semigroups and their lattice congruences”, Semigroup Forum, 26:1–2 (1983), 1–64 | DOI | MR

[6] Mitsch H., “Semigroups and their lattice congruences II”, Semigroup Forum, 54:1 (1997), 1–42 | DOI | MR | Zbl

[7] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985, 440 pp.

[8] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997, 368 pp. | MR

[9] Lyapin E. S., Evseev A. E., Chastichnye algebraicheskie deistviya, Ross. gos. ped. un-t im. A. I. Gertsena: Obrazovanie, S.-Peterburg, 1991, 163 pp. | MR

[10] Lyapin E. S., “O vnutrennem prodolzhenii chastichnykh deistvii do polnykh assotsiativnykh”, Izv. vuzov. Matem., 7 (1982), 40–44 | Zbl

[11] Lyapin E. S., “Chastichnye gruppoidy, poluchaemye iz polugrupp ogranicheniyami i gomomorfizmami”, Izv. vuzov. Matem., 10 (1989), 30–36 | MR

[12] Lyapin E. S., “O vozmozhnosti polugruppovogo prodolzheniya chastichnogo gruppoida”, Izv. vuzov. Matem., 12 (1989), 68–70

[13] Lyapin E. S., “Vnutrennee polugruppovoe prodolzhenie nekotorykh polugruppovykh amalgam”, Izv. vuzov. Matem., 11 (1993), 20–26 | MR | Zbl

[14] Apraksina T. V., Maksimovskii M. Yu., “Poligony i chastichnye poligony nad polureshetkami”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:1 (2012), 3–7 | MR | Zbl

[15] Korobov M. S., Petrikov A. O., “Prodolzhenie chastichnykh operatsii v universalnykh algebrakh”, Informatika i kibernetika, 11:1 (2018), 60–64