Moderately partial algebras whose equivalence relations are congruences
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 292-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider partial algebras whose equivalence relations are congruences. The problem of description of such partial algebras can be reduced to the problem of description of partial $n$-ary groupoids with the similar condition. In this paper a concept of moderately partial operation is used. A description is given for the moderately partial operations preserving any equivalence relation on a fixed set. Let $A$ be a non-empty set, $f$ be a moderately partial operation, defined on $A$ (i.e. if we fix all of the arguments of $f$, except one of them, we obtain a new partial operation $\varphi$ such that its domain $\mathrm{dom}\, \varphi$ satisfies the condition $|\mathrm{dom}\, \varphi| \ge 3$). Let any equivalence relation on the set $A$ be stable relative to $f$ (in the other words, the congruence lattice of the partial algebra $(A,\{f\})$ coinsides the equivalence relation lattice on the set $A$). In this paper we prove that in this case the partial operation $f$ can be extended to a full operation $g$, also defined on the set $A$, such that $g$ preserves any equivalence relation on $A$ too. Moreover, if the arity of the partial operation $f$ is finite, then either $f$ is a partial constant (i.e. $f(x) = f(y)$ for all $x,y \in \mathrm{dom}\, f$), or $f$ is a partial projection (there is an index $i$ such that all of the tuples $x = (x_1, ..., x_n) \in \mathrm{dom}\, f$ satisfy the condition $f(x_1, ..., x_i, ..., x_n) = x_i$).
Keywords: moderately partial algebra, partial infinite-ary groupoid, congruence lattice, equivalence relation lattice.
@article{CHEB_2021_22_1_a19,
     author = {A. V. Reshetnikov},
     title = {Moderately partial algebras whose equivalence relations are congruences},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {292--303},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a19/}
}
TY  - JOUR
AU  - A. V. Reshetnikov
TI  - Moderately partial algebras whose equivalence relations are congruences
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 292
EP  - 303
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a19/
LA  - ru
ID  - CHEB_2021_22_1_a19
ER  - 
%0 Journal Article
%A A. V. Reshetnikov
%T Moderately partial algebras whose equivalence relations are congruences
%J Čebyševskij sbornik
%D 2021
%P 292-303
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a19/
%G ru
%F CHEB_2021_22_1_a19
A. V. Reshetnikov. Moderately partial algebras whose equivalence relations are congruences. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 292-303. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a19/

[1] Galvin F., Horn A., “Operations preserving all equivalence relations”, Proc. Amer. Math. Soc., 24:3 (1970), 521–523 | DOI | MR | Zbl

[2] Reshetnikov A. V., “O chastichnykh beskonechnoarnykh gruppoidakh, u kotorykh kazhdoe otnoshenie ekvivalentnosti yavlyaetsya kongruentsiei”, Informatika i kibernetika, 20:2 (2020), 48–58

[3] Grätzer G., Universal algebra, Second Edition, 2nd ed. with updates, Springer, New York, 2008, 586 pp. ; Second Edition, Springer Science+Business Media, LLC, 1979 | MR | Zbl | Zbl

[4] Kon P., Universalnaya algebra, Mir, M., 1968, 351 pp. | MR

[5] Mitsch H., “Semigroups and their lattice congruences”, Semigroup Forum, 26:1–2 (1983), 1–64 | DOI | MR

[6] Mitsch H., “Semigroups and their lattice congruences II”, Semigroup Forum, 54:1 (1997), 1–42 | DOI | MR | Zbl

[7] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985, 440 pp.

[8] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, Fizmatlit, M., 1997, 368 pp. | MR

[9] Lyapin E. S., Evseev A. E., Chastichnye algebraicheskie deistviya, Ross. gos. ped. un-t im. A. I. Gertsena: Obrazovanie, S.-Peterburg, 1991, 163 pp. | MR

[10] Lyapin E. S., “O vnutrennem prodolzhenii chastichnykh deistvii do polnykh assotsiativnykh”, Izv. vuzov. Matem., 7 (1982), 40–44 | Zbl

[11] Lyapin E. S., “Chastichnye gruppoidy, poluchaemye iz polugrupp ogranicheniyami i gomomorfizmami”, Izv. vuzov. Matem., 10 (1989), 30–36 | MR

[12] Lyapin E. S., “O vozmozhnosti polugruppovogo prodolzheniya chastichnogo gruppoida”, Izv. vuzov. Matem., 12 (1989), 68–70

[13] Lyapin E. S., “Vnutrennee polugruppovoe prodolzhenie nekotorykh polugruppovykh amalgam”, Izv. vuzov. Matem., 11 (1993), 20–26 | MR | Zbl

[14] Apraksina T. V., Maksimovskii M. Yu., “Poligony i chastichnye poligony nad polureshetkami”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 12:1 (2012), 3–7 | MR | Zbl

[15] Korobov M. S., Petrikov A. O., “Prodolzhenie chastichnykh operatsii v universalnykh algebrakh”, Informatika i kibernetika, 11:1 (2018), 60–64