Weak Faddeev--Takhtajan--Volkov algebras. Lattice $W_n$ algebras
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 273-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we will start by deliberating at our project's historical general view and then we will try to construct a new Poisson bracket on our simplest example $sl_2$ and then we will try to give a universal construction based on our universal variables and then will try to construct lattice $W_2$ algebras which will play a key role in our other constructions on lattice $W_3$ algebras and finally we will try to find the only nontrivial dependent generator of our lattice $W_4$ algebras and so on for lattice $W_n$ algebras.
Keywords: Lattice $W$ algebras, quantum groups, Feigin's homomorphisms.
@article{CHEB_2021_22_1_a18,
     author = {F. Razavinia},
     title = {Weak {Faddeev--Takhtajan--Volkov} algebras. {Lattice} $W_n$ algebras},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {273--291},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a18/}
}
TY  - JOUR
AU  - F. Razavinia
TI  - Weak Faddeev--Takhtajan--Volkov algebras. Lattice $W_n$ algebras
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 273
EP  - 291
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a18/
LA  - en
ID  - CHEB_2021_22_1_a18
ER  - 
%0 Journal Article
%A F. Razavinia
%T Weak Faddeev--Takhtajan--Volkov algebras. Lattice $W_n$ algebras
%J Čebyševskij sbornik
%D 2021
%P 273-291
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a18/
%G en
%F CHEB_2021_22_1_a18
F. Razavinia. Weak Faddeev--Takhtajan--Volkov algebras. Lattice $W_n$ algebras. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 273-291. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a18/

[1] Antonov A., Belov A.A., Chaltikian K., “Lattice conformal theories and their integrable perturbations”, Journal of Geometry and Physics, 22:4 (1997), 298–318 | DOI | MR | Zbl

[2] Belov A.A., Chaltikian K.D., “Lattice analogues of W-algebras and classical integrable equations”, Physics Letters B, 309:3–4 (1993), 268–274 | DOI | MR | Zbl

[3] Berenstein A., Group-like elements in quantum groups, and Feigin's conjecture, 1996, arXiv: q-alg/9605016

[4] Caressa P., “The algebra of Poisson brackets”, Young Algebra Seminar (Roma Tor Vergata, 2000)

[5] Feigin B.L., talk at RIMS, 1992

[6] Faddeev L., Volkov A.Y., “Abelian current algebra and the Virasoro algebra on the lattice”, Physics Letters B, 315:3–4 (1993), 311–318 | DOI | MR | Zbl

[7] Gainutdinov A.M., Saleur H., Tipunin I.Y., “Lattice W-algebras and logarithmic CFTs”, Journal of Physics A: Mathematical and Theoretical, 47:49 (2014), 495401 | DOI | MR | Zbl

[8] Goursat E., A Course in Mathematical Analysis, v. 2, Differential equations, Dover Publications, 1916–1917 | MR

[9] Hikami K., “Lattice WN algebra and its quantization”, Nuclear Physics B, 505:3 (1997), 749–770 | DOI | MR | Zbl

[10] Hikami K., Inoue R., “Classical lattice W algebras and integrable systems”, Journal of Physics A: Mathematical and General, 30:19 (1997), 6911 | DOI | MR | Zbl

[11] Hong J., Kang S.J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, American Mathematical Soc., 2002 | DOI | MR | Zbl

[12] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer Science Business Media, 2012 | MR

[13] Majid S., A quantum groups primer, London Mathematical Society Lecture Notes, 292, Cambridge University Press, 2002 | MR | Zbl

[14] Lattice W algebras and quantum groups, Theoretical and Mathematical Physics, 100:1 (1994), 900–911 | DOI | MR

[15] Razavinia F., Local coordinate systems on quantum flag manifolds, 2016, arXiv: 1610.09443