On a locally nilpotent radical Jacobson for special Lie algebras
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 234-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper investigates the possibility of homological description of Jacobson radical and locally nilpotent radical for Lie algebras, and their relation with a $PI$ - irreducibly represented radical, and some properties of primitive Lie algebras are studied. We prove an analog of The F. Kubo theorem for almost locally solvable Lie algebras with a zero Jacobson radical. It is shown that the Jacobson radical of a special almost locally solvable Lie algebra $L$ over a field $F$ of characteristic zero is zero if and only if the Lie algebra $L$ has a Levi decomposition $L=S\oplus Z(L)$, where $Z(L)$ is the center of the algebra $L$, $S$ is a finite-dimensional subalgebra $L$ such that $J(L)=0$. For an arbitrary special Lie algebra $L$, the inclusion of $IrrPI(L)\subset J(L)$ is shown, which is generally strict. An example of a Lie algebra $L$ with strict inclusion $J(L)\subset IrrPI(L)$ is given. It is shown that for an arbitrary special Lie algebra $L$ over the field $F$ of characteristic zero, the inclusion of $N (L)\subset IrrPI(L)$, which is generally strict. It is shown that most Lie algebras over a field are primitive. An example of an Abelian Lie algebra over an algebraically closed field that is not primitive is given. Examples are given showing that infinite-dimensional commutative Lie algebras are primitive over any fields; a finite-dimensional Abelian algebra of dimension greater than 1 over an algebraically closed field is not primitive; an example of a non-Cartesian noncommutative Lie algebra is primitive. It is shown that for special Lie algebras over a field of characteristic zero $PI$-an irreducibly represented radical coincides with a locally nilpotent one. An example of a Lie algebra whose locally nilpotent radical is neither locally nilpotent nor locally solvable is given. Sufficient conditions for the primitiveness of a Lie algebra are given, and examples of primitive Lie algebras and non-primitive Lie algebras are given.
Keywords: Lie algebra, primitive Lie algebra, special Lie algebra, irreducible $PI$-representation, Jacobson radical, locally nilpotent radical, reductive Lie algebra, almost locally solvable Lie algebra.
@article{CHEB_2021_22_1_a17,
     author = {O. A. Pikhtilkova and E. V. Mescherina and A. N. Blagovisnaya and E. V. Pronina and O. A. Evseeva},
     title = {On a locally nilpotent radical {Jacobson} for special {Lie} algebras},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {234--272},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a17/}
}
TY  - JOUR
AU  - O. A. Pikhtilkova
AU  - E. V. Mescherina
AU  - A. N. Blagovisnaya
AU  - E. V. Pronina
AU  - O. A. Evseeva
TI  - On a locally nilpotent radical Jacobson for special Lie algebras
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 234
EP  - 272
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a17/
LA  - ru
ID  - CHEB_2021_22_1_a17
ER  - 
%0 Journal Article
%A O. A. Pikhtilkova
%A E. V. Mescherina
%A A. N. Blagovisnaya
%A E. V. Pronina
%A O. A. Evseeva
%T On a locally nilpotent radical Jacobson for special Lie algebras
%J Čebyševskij sbornik
%D 2021
%P 234-272
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a17/
%G ru
%F CHEB_2021_22_1_a17
O. A. Pikhtilkova; E. V. Mescherina; A. N. Blagovisnaya; E. V. Pronina; O. A. Evseeva. On a locally nilpotent radical Jacobson for special Lie algebras. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 234-272. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a17/

[1] Burbaki N., Gruppy i algebry Li (glavy I-III), Mir, M., 1976, 496 pp.

[2] Yu.P. Razmyslov, “Ob engelevykh algebrakh Li”, Algebra i logika, 10:10 (1971), 33–44 | MR

[3] Kostrikin A. I., Vokrug Bernsaida, Nauka, M., 1986, 232 pp. | MR

[4] Kubo F., “Infinite-dimensional Lie algebras with null Jacobson radical”, Bull. Kyushu Inst. Technol. Math. Nat. Sci., 38 (1991), 23–30 | MR | Zbl

[5] Togo S., “Radicals of infinite-dimensional Lie algebras”, Hiroshima Math. J., 2 (1972), 179–203 | MR | Zbl

[6] Togo S., Kavamoto N., “Ascendantly coalescent classes and radicals of Lie algebras”, Hiroshima Math. J., 2 (1972), 253–261 | MR | Zbl

[7] Marshall E. I., “The Frattini subalgebras of a Lie algebra”, J. London Math. Soc., 42 (1967), 416–422 | DOI | MR | Zbl

[8] V.N. Latyshev, “Ob algebrakh Li s tozhdestvennymi sootnosheniyami”, Sib. mat. zhurnal, 4:4 (1963), 821–829 | Zbl

[9] Beidar K.I., Pikhtilkov S.A., “O pervichnom radikale spetsialnykh algebr Li”, Uspekhi matem. nauk, 1994, no. 1, 233 | MR | Zbl

[10] K.I. Beidar, S.A. Pikhtilkov, “Pervichnyi radikal spetsialnykh algebr Li”, Fundamentalnaya i prikladnaya matematika, 6:3 (2000), 643–648 | MR | Zbl

[11] S. A. Pikhtilkov, “O lokalno nilpotentnom radikale spetsialnykh algebr Li”, Fundamentalnaya i prikladnaya matematika, 8:3 (2002), 769–782 | MR | Zbl

[12] V.A. Parfenov, “O slabo razreshimom radikale algebr Li”, Sib. mat. zhurnal, 12:1 (1971), 171–176 | Zbl

[13] S.A. Pikhtilkov, “Artinovye spetsialnye algebry Li”, Algoritmicheskie problemy teorii grupp i polugrupp, TGPU, Tula, 2001, 189–194

[14] Pikhtilkov S.A., Strukturnaya teoriya spetsialnykh algebr Li, Izd-vo Tul. gos. ped. un-ta im. L.N. Tolstogo, Tula, 2005, 130 pp.

[15] S.A. Pikhtilkov, V.M. Polyakov, “O lokalno nilpotentnykh artinovykh algebrakh Li”, Chebyshevskii sbornik, 6:1 (2005), 163–169 | MR | Zbl

[16] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972, 191 pp. | MR

[17] A.R. Kemer, “Tozhdestva Kapelli i nilpotentnost radikala konechno porozhdennoi $PI$-algebry”, DAN SSSR, 255:4 (1980), 793–797 | MR

[18] Braun A., “The nilpotency of the radical in a finitely generated $PI$-ring”, J. of Algebra, 89:2 (1984), 375–396 | DOI | MR | Zbl

[19] A.I. Shirshov, “O koltsakh s tozhdestvennymi sootnosheniyami”, Mat. sbornik, 43:2 (1957), 277–283 | Zbl

[20] Razmyslov Yu.P., Tozhdestva algebr i ikh predstavleniya, Nauka, M., 1989 | MR

[21] Lambek I., Koltsa i moduli, Mir, M., 1971, 279 pp. | MR

[22] Beidar K.I., Martindale W.S., Mikhalev A.V., Rings with generalized identities, Pure and Applied Mathematics, Marcel-Dekker, New-York, 1996 | MR | Zbl

[23] Baxter W.E., Martindale W.S., “Central closure of semiprime non-associative rings”, Commun. of Algebra, 7:11 (1979), 1105–1132 | DOI | MR

[24] S.A. Pikhtilkov, “Primitivnost svobodnoi assotsiativnoi algebry s konechnym chislom obrazuyuschikh”, Uspekhi matem. nauk, 1974, no. 1, 183–184

[25] Amayo R., Stewart I., Infinite dimensional Lie algebras, Noordhoof, Leyden, 1974 | MR | Zbl

[26] V.N. Latyshev, A.V. Mikhalev, S.A. Pikhtilkov, “O summe lokalno razreshimykh idealov algebr Li”, Vestnik MGU.- Ser. 1. matem., mekh., 2003, no. 3, 29–32 | Zbl

[27] Amitsur S.A., “Algebras over infinite fields”, Proc. Amer. Math. Soc., 7 (1956), 35–48 | DOI | MR | Zbl

[28] Algebra-2, Itogi nauki i tekhniki. Seriya “Sovremennye problemy matematiki. Fundamentalnye napravleniya”, 18, VINITI, M., 1988, 248 pp.

[29] Yu.P. Razmyslov, “O radikale Dzhekobsona v $PI$-algebrakh”, Algebra i logika, 13:3 (1974), 337–360 | MR

[30] Yu.A. Bakhturin, “O stroenii $PI$-obolochki konechnomernoi algebry Li”, Izv. vuzov. ser. Matem., 1985, no. 11, 60–62 | MR | Zbl

[31] I.N. Balaba, A.V. Mikhalev, S.A. Pikhtilkov, “Pervichnyi radikal graduirovannykh $\Omega$-grupp”, Fundamentalnaya i prikladnaya matematika, 12:2 (2006), 159–174

[32] Dzhekobson N., Stroenie kolets, Izd-vo inostr. literatury, M., 1961, 392 pp.

[33] Billig Yu.V., “O gomomorfnom obraze spetsialnoi algebry Li”, Matem. sbornik, 136:3 (1988), 320–323 | Zbl

[34] S.A. Pikhtilkov, “O spetsialnykh algebrakh Li”, Uspekhi matem. nauk, 36:6 (1981), 225–226 | MR | Zbl

[35] Kamiya N., “On the Jacobson radicals of infinite-dimensional Lie algebras”, Hiroshima Math. J., 9 (1979), 37–40 | DOI | MR | Zbl

[36] Dzhekobson N., Algebry Li, Mir, M., 1964, 355 pp. | MR

[37] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985, 447 pp. | MR

[38] Yu.A. Terekhova, “O teoreme Levi dlya spetsialnykh algebr Li”, Algoritmicheskie problemy teorii grupp i polugrupp, Mezhvuzovskii sbornik nauchnykh trudov, Izd-vo TGPI im. L.N. Tolstogo, Tula, 1994, 97–103

[39] I. M. Vinogradov (red.), Matematicheskaya entsiklopediya, v. 1, A–G, Sov. entsiklopediya, M., 1977, 1151 pp. | MR

[40] L. A. Simonyan, “O radikale Dzhekobsona algebry Li”, Latviiskii matematicheskii ezhegodnik, 1993, no. 34, 230–234 | MR

[41] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978, 407 pp.

[42] Leng S., Algebra, Mir, M., 1968, 564 pp.