Filial rings on direct sums and direct products of torsion-free abelian groups
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 200-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring whose additive group coincides with an abelian group $G$ is called a ring on $G$. An abelian group $G$ is called a $TI$-group if every associative ring on $G$ is filial. If every (associative) ring on an abelian group $G$ is an $SI$-ring (a hamiltonian ring), then $G$ is called an $SI$-group (an $SI_H$-group). In this article, $TI$-groups, $SI_H$-groups and $SI$-groups are described in the following classes of abelian groups: almost completely decomposable groups, separable torsion-free groups and non-measurable vector groups. Moreover, a complete description of non-reduced $TI$-groups, $SI_H$-groups and $SI$-groups is given. This allows us to only consider reduced groups when studying $TI$-groups.
Keywords: abelian group, ring on a group, filial ring, $TI$-group.
@article{CHEB_2021_22_1_a14,
     author = {E. I. Kompantseva and T. K. T. Nguyen and V. A. Gazaryan},
     title = {Filial rings on direct sums and direct products of torsion-free abelian groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {200--212},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a14/}
}
TY  - JOUR
AU  - E. I. Kompantseva
AU  - T. K. T. Nguyen
AU  - V. A. Gazaryan
TI  - Filial rings on direct sums and direct products of torsion-free abelian groups
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 200
EP  - 212
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a14/
LA  - ru
ID  - CHEB_2021_22_1_a14
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%A T. K. T. Nguyen
%A V. A. Gazaryan
%T Filial rings on direct sums and direct products of torsion-free abelian groups
%J Čebyševskij sbornik
%D 2021
%P 200-212
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a14/
%G ru
%F CHEB_2021_22_1_a14
E. I. Kompantseva; T. K. T. Nguyen; V. A. Gazaryan. Filial rings on direct sums and direct products of torsion-free abelian groups. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 200-212. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a14/

[1] Beaumont R. A., “Rings with additive groups which is the direct sum of cyclic groups”, Duke Math. J., 15:2 (1948), 367–369 | DOI | MR | Zbl

[2] Feigelstock S., “Additive groups of rings whose subrings are ideals”, Bull. Austral. Math. Soc., 55 (1997), 477–481 | DOI | MR | Zbl

[3] Redei L., “Vollidealringe im weiteren Sinn. I”, Acta Math. Acad. Sci. Hungar., 3 (1952), 243–268 | DOI | MR | Zbl

[4] Andriyanov V. I., “Periodicheskie gamiltonovy koltsa”, Matem. sb., 74(116):2 (1967), 241–261 | MR

[5] Kruse R. L., “Rings in which all subrings are ideals”, Canad. J. Math., 20 (1968), 862–871 | DOI | MR | Zbl

[6] Ehrlich G., “Filial rings”, Portugal. Math., 42, 1983–1984 | MR | Zbl

[7] Sands A. D., “On ideals in over-rings”, Publ. Math. Debrecen, 35 (1988), 273–279 | DOI | MR | Zbl

[8] Andruszkiewicz R., Puczylowski E., “On filial rings”, Portugal. Math., 45:2 (1988), 139–149 | MR | Zbl

[9] Filipowicz M., Puczylowski E. R., “Left filial rings”, Algebra Colloq., 11 (2004), 335–344 | MR | Zbl

[10] Filipowicz M., Puczylowski E. R., “On filial and left filial rings”, Publ. Math. Debrecen, 66 (2005), 257–267 | DOI | MR | Zbl

[11] Andruszkiewicz R., Pryszczepko K., “On fully filial torsion rings”, Bull. Korean Math. Soc., 56:1 (2019), 23–29 | MR | Zbl

[12] Baer R., “Meta ideals. Report conf. linear algebras. June. 1956”, Publ. National Acad. Sci. nat. Res. Counil., 502, 1957, 33–52 | MR

[13] Andruszkiewicz R., Woronowicz M., “On $TI$-groups”, Recent Results in Pure and Applied Math., Podlasie, 2014, 33–41 | MR

[14] Andruszkiewicz R., Woronowicz M., “On $SI$-groups”, Bull. of the Australian Math. Soc., 91:1 (2015), 92–103 | DOI | MR | Zbl

[15] Kompantseva E. I., Nguen T. K. Ch., “Algebraicheski kompaktnye abelevy TI-gruppy”, Chebyshevskii sbornik, 20:1 (2019), 202–211 | DOI | MR

[16] Andruszkiewicz R., Woronowicz M., “On additive groups of associative and commutative rings”, J. Quaest. Math., 40:4 (2017), 527–537 | DOI | MR | Zbl

[17] Fuchs L., Abelian Groups, Springer Int. Publ., Switzerland, 2015 | MR | Zbl

[18] Mader A., Almost Completely Decomposable Abelian Groups, Algebra Logic Appl. Ser., 13, Gordon and Breach, Amsterdam, 2000 | MR

[19] Arnold D. M., Mader A., Mutzbauer O., Solak E., “Almost completely decomposable groups and unbounded representation type”, J. of Algebra, 349:1 (2012), 50–62 | DOI | MR | Zbl

[20] Solak E., “Classification of a class of torsion-free abelian groups”, Math. Journal of the Univ. of Padova, 135 (2016), 111–131 | MR | Zbl

[21] Kompantseva E. I., “Koltsa na pochti vpolne razlozhimykh abelevykh gruppakh”, Fundament. i prikl. matem., 14:5 (2008), 93–101

[22] Kompantseva E. I., Fomin A. A., “Absolyutnye idealy pochti vpolne razlozhimykh abelevykh grupp”, Chebyshevskii sb., 16:4 (2015), 200–211 | MR | Zbl

[23] Chekhlov A. R., “Ob abelevykh gruppakh, vse podgruppy kotorykh yavlyayutsya idealami”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2009, no. 3(7), 64–67

[24] Baer R., “Abelian groups without elements of finite order”, Duke Math. J., 3 (1937), 68–122 | DOI | MR | Zbl

[25] Sasiada E., “On the isomorphism of decompositions of torsion-free abelian groups into complete direct sums of groups of rank one”, Bull. Acad. Polon. Sci., 7 (1959), 145–149 | MR | Zbl

[26] Mishina A. P., “Separabelnost polnykh pryamykh summ abelevykh grupp bez krucheniya ranga 1”, Matem. sb., 57 (1962), 375–383 | Zbl