Commutative semigroups with bounded orders of subdirectly irreducible acts
Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 188-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

Subdirectly irreducible universal algebras, i.e., algebras which are not decomposable into non-trivial subdirect product, play an important role in mathematics due to well-known Birkhoff Theorem which states that any algebra is a subdirect product of subdirectly irreducible algebras (in another terminology: every algebra is approximated by the subdirectly irreducible algebras). In view of this, it seems reasonable to study algebras with certain conditions on subdirectly irreducible algebras. One of the natural restrictions is the finiteness of all subdirectly irreducible algebras. More stronger restriction is boundness of orders of all subdirectly irreducible algebras. An act over a semigroup (it is also an automaton, and a unary algebra) is a set with an action of the given semigroup on it. The acts over a fixed semigroup form a variety whose signature coincides with self semigroup. On the other hand, it is a category whose morphisms are homomorphisms from one act into another. It is not difficult to see that the semigroups over which all subdirectly ireducible acts are finite, are exactly the semigroups over which all subdirectly irreducible acts are finitely approximated (in another terminology: residually finite). A more narrow class form semigroups over which all acts are approximated by acts of $n$ or less elements where $n$ is a fixed natural number. In 2000, I. B. Kozhukhov proved that all non-trivial acts over a semigroup $S$ are approximated by two-element ones if and only if $S$ is a semilattice (a commutative idempotent semigroup). In 2014, I. B. Kozhukhov and A. R. Haliullina proved that any semigroup with bounded orders of dubdirectly irreducible acts is uniformly locally finite, i.e., for every $k$, the orders of $k$-generated subsemigroups are bounded. In the work of I. B. Kozhukhov and A. V. Tsarev 2019, the authors described completely the abelian groups over which all acts are finitely approximated, and also abelian groups over which all acts are approximated by acts of bounded orders. In this work, we characterize the commutative semigroups over which all acts are approximated by acts consisted of $n$ or less elements.
Keywords: commutative semigroup, act over semigroup, subdirectly irreducible act, finite approximation.
@article{CHEB_2021_22_1_a13,
     author = {I. B. Kozhukhov},
     title = {Commutative semigroups with bounded orders of subdirectly irreducible acts},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {188--199},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a13/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
TI  - Commutative semigroups with bounded orders of subdirectly irreducible acts
JO  - Čebyševskij sbornik
PY  - 2021
SP  - 188
EP  - 199
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a13/
LA  - ru
ID  - CHEB_2021_22_1_a13
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%T Commutative semigroups with bounded orders of subdirectly irreducible acts
%J Čebyševskij sbornik
%D 2021
%P 188-199
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a13/
%G ru
%F CHEB_2021_22_1_a13
I. B. Kozhukhov. Commutative semigroups with bounded orders of subdirectly irreducible acts. Čebyševskij sbornik, Tome 22 (2021) no. 1, pp. 188-199. http://geodesic.mathdoc.fr/item/CHEB_2021_22_1_a13/

[1] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, v. 1, Mir, M., 1872, 286 pp.; т. 2, 432 с.

[2] Kozhukhov I. B., “Kommutativnye polugruppy s ogranicheniyami na podpryamo nerazlozhimye poligony”, Informatika i kibernetika (DonNTU), 21:3 (2020), 21–24

[3] Kozhukhov I. B., “Polugruppy, nad kotorymi vse poligony rezidualno konechny”, Fundamentalnaya i prikladnaya matematika, 4:4 (1998), 1335–1344 | MR | Zbl

[4] Kozhukhov I. B., “Usloviya konechnosti dlya podpryamo nerazlozhimykh poligonov i modulei”, Fundamentalnaya i prikladnaya matematika, 4:2 (1998), 763–767 | MR | Zbl

[5] Kozhukhov I. B., Khaliullina A. R., “Polugruppy s finitno approksimiruemymi poligonami”, Matematicheskie zametki SVFU, 21:3 (83) (2014), 60–67 | Zbl

[6] Kozhukhov I. B., Khaliullina A. R., “Kharakterizatsiya podpryamo nerazlozhimykh poligonov”, Prikladnaya diskretnaya matematika, 27:1 (2015), 5–16

[7] Kozhukhov I. B., Tsarev A. V., “Abelevy gruppy s finitno approksimiruemymi poligonami”, Fundamentalnaya i prikladnaya matematika, 22:5 (2019), 81–89

[8] Kon P., Universalnaya algebra, Mir, M., 1968, 353 pp. | MR

[9] Pinus A. G., “Vnutrennie gomomorfizmy i pozitivno-uslovnye termy”, Algebra i logika, 40:2 (2001), 158–173 | MR | Zbl

[10] Plotkin B. I., Gringlaz L. Ya., Gvaramiya A. A., Elementy algebraicheskoi teorii avtomatov, Vyssh. shkola, M., 1994, 191 pp.

[11] Roiz E. N., “O podpryamo nerazlozhimykh monarakh”, Mezhvuz. nauchn. sbornik “Uporyadochennye mnozhestva i reshetki”, 2, 1874, 80–94

[12] M. Arbib (red.), Algebraicheskaya teoriya avtomatov, yazykov i polugrupp, Statistika, M., 1875, 335 pp.

[13] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1874, 336 pp.

[14] Esik Z., Imreh B., “Subdirectly irreducible commutative automata”, Acta Cybernetica, 5:3 (1981), 251–260 | MR | Zbl

[15] Kilp M., Knauer U., Mikhalev A. V., Monoids, acts and categories, W. de Gruyter, N.Y.–Berlin, 2000, xvii+529 pp. | MR | Zbl

[16] Kozhukhov I. B., “One characteristical property of semilattices”, Commun. Algebra, 25:8 (1997), 2569–2577 | DOI | MR | Zbl

[17] Moghaddasi Gh., Mahmoudi M., “Subdirectly irreducible acts over some semigroups”, Bull. Iranian Math. Soc., 43:6 (2017), 1913–1924 | MR | Zbl

[18] Rankin S. A., Reis C. M., Thierrin G., “Right subdirectly irreducible semigroups”, Pacific J. Math., 85:2 (1979), 403–412 | DOI | MR | Zbl

[19] Roueentan M., Sedaghatjoo M., “The structure of subdirectly irreducible and uniform acts over rectangular bands”, Semigroup Forum, 101:1 (2020), 192–201 | DOI | MR | Zbl