Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_4_a9, author = {V. I. Ivanov}, title = {Weighted inequalities for {Dunkl--Riesz} transforms and {Dunkl} gradient}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {97--106}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a9/} }
V. I. Ivanov. Weighted inequalities for Dunkl--Riesz transforms and Dunkl gradient. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 97-106. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a9/
[1] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2002, 93–135 | DOI | MR
[2] Thangavelu S., Xu Y., “Riesz transform and Riesz potentials for Dunkl transform”, J. Comput. Appl. Math., 199 (2007), 181–195 | DOI | MR | Zbl
[3] Amri B., Sifi M., “Riesz transforms for Dunkl transform”, Annales mathématiques Blaise Pascal, 19:1 (2012), 147–162 | DOI | MR
[4] Abdelkefi C., Rachdi M., “Some properties of the Riesz potentials in Dunkl analysis”, Ricerche di Matematica, 64:1 (2015), 195–215 | DOI | MR | Zbl
[5] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Riesz Potential and Maximal Function for Dunkl transform”, Potential Analysis, 2020 | DOI | MR
[6] Hassani S., Mustapha S., Sifi M., “Riesz potentials and fractional maximal function for the Dunkl transform”, J. Lie Theory, 19:4 (2009), 725–734 | MR | Zbl
[7] Velicu A., Hardy-type inequalities for Dunkl operators, 2019, 20 pp., arXiv: 1901.08866 | MR
[8] Velicu A., “Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities”, Communications in Contemporary Mathematics, 2020 | DOI | MR | Zbl
[9] Stein E. M., “Note on Singular Integrals”, Proc. Amer. Math. Soc., 8:2 (1957), 250–254 | DOI | MR | Zbl
[10] Gorbachev D. V., Ivanov V. I., “Weighted inequalities for Dunkl-Riesz potential”, Chebyshevskii Sbornik, 20:1 (2019), 131–147 (In Russian) | DOI | MR | Zbl