Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_4_a8, author = {V. I. Ivanov}, title = {Bounded translation operator for the $(k,1)$-generalized {Fourier} transform}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {85--96}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a8/} }
V. I. Ivanov. Bounded translation operator for the $(k,1)$-generalized Fourier transform. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 85-96. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a8/
[1] Howe R., “The oscillator semigroup. The mathematical heritage of Hermann Weyl (Durham, NC, 1987)”, Proc. Sympos. Pure Math. Amer. Math. Soc., 48, Amer. Math. Soc., Providence, RI, 1988, 61–132 | DOI | MR
[2] Dunkl C. F., “Hankel transforms associated to finite reflections groups”, Contemp. Math., 138, 1992, 123–138 | DOI | MR | Zbl
[3] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2002, 93–135 | DOI | MR
[4] Salem Ben Saïd, Kobayashi T., Ørsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl
[5] Kobayashi T., Mano G., “The Schrödinger model for the minimal representation of the indefinite orthogonal group $O(p;q)$”, Memoirs of the American Mathematical Societies, 212, no. 1000, Amer. Math. Soc., Providence, RI, 2011 | MR
[6] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 | DOI | MR | Zbl
[7] Trimèche K., “Paley–Wiener Theorems for the Dunkl transform and Dunkl translation operators”, Integral Transform. Spec. Funct., 13 (2002), 17–38 | DOI | MR | Zbl
[8] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355 (2003), 2413–2438 | DOI | MR | Zbl
[9] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl
[10] Thangavelu S., Xu Y., “Convolution operator and maximal function for Dunkl transform”, J. d'Analyse. Math., 97 (2005), 25–55 | DOI | MR
[11] Salem Ben Sa\"{i}d, Deleaval L., “Translation operator and maximal function for the $(k,1)$-generalized Fourier transform”, Journal of Functional Analysis, 279:8 (2020), 108706 | DOI | MR | Zbl
[12] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Pitt's Inequalities and Uncertainty Principle for Generalized Fourier Transform”, International Mathematics Research Notices, 2016:23 (2016), 7179–7200 | DOI | MR | Zbl
[13] Johansen T. R., “Weighted inequalities and uncertainty principles for the (k; a)-generalized Fourier transform”, Internat. J. Math., 27:3 (2016), 1650019 | DOI | MR | Zbl
[14] Vatson G. N., Teoriya besselevykh funktsii, IL, M., 1949, 799 pp.
[15] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 2, Preobrazovaniya Besselya. Integraly, Nauka, M., 1970, 328 pp.
[16] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986, 464 pp.
[17] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964, 412 pp. | MR