Bounded translation operator for the $(k,1)$-generalized Fourier transform
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 85-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In spaces with a Dunkl weight $v_k (x)$ of power type on $\mathbb{R}^ d$, defined by a root system and a nonnegative multiplicity function $k$ invariant with respect to a finite reflection group, a meaningful harmonic analysis is constructed. that generalizes the Fourier analysis in the Euclidean space. The classical Fourier analysis on the Euclidean space corresponds to the case $k\equiv0$. In 2012, Salem Ben Sa\v{i}d, Kobayashi, and Orsted defined the two-parameteric $(k, a)$-generalized Fourier transform, acting in spaces with weight $|x|^{a-2}v_k(x)$, $a>0$. The most interesting cases are $a =2$ and $a =1$. For $a =2$ the generalized Fourier transform coincides with the Dunkl transform and it is well studied. In case $a=1$ harmonic analysis, which is important, in particular, in problems of quantum mechanics, has not yet been sufficiently studied. One of the essential elements of harmonic analysis is the bounded translation operator, which allows one to determine the convolution and structural characteristics of functions. For $a=1$, there is a translation operator $\tau^yf(x)$. Its $L^p$-boundedness was recently established by Salem Ben Sa\v{i}d and Deleaval, but only on radial functions and for $1\le p\le 2$. In this paper, a new generalized translation operator $T^tf(x)$ is proposed. It is obtained by integrating of the operator $\tau^yf(x)$ over the unit Euclidean sphere with respect to the variable $y'$, $|y'|=1$, $y=ty'$. We prove that it is positive on functions from the Schwartz space $\mathcal{S}(\mathbb{R}^d)$, for it $T^t1=1$ and it admits a representation with a probability measure. From this we deduce its $L^p$-boundedness for all $1\le p\infty$ and boundedness on the space $C_b(\mathbb{R}^d)$ of continuous bounded functions.
Keywords: $(k,1)$-generalized Fourier transform, translation operator.
@article{CHEB_2020_21_4_a8,
     author = {V. I. Ivanov},
     title = {Bounded translation operator for the $(k,1)$-generalized {Fourier} transform},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {85--96},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a8/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Bounded translation operator for the $(k,1)$-generalized Fourier transform
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 85
EP  - 96
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a8/
LA  - ru
ID  - CHEB_2020_21_4_a8
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Bounded translation operator for the $(k,1)$-generalized Fourier transform
%J Čebyševskij sbornik
%D 2020
%P 85-96
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a8/
%G ru
%F CHEB_2020_21_4_a8
V. I. Ivanov. Bounded translation operator for the $(k,1)$-generalized Fourier transform. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 85-96. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a8/

[1] Howe R., “The oscillator semigroup. The mathematical heritage of Hermann Weyl (Durham, NC, 1987)”, Proc. Sympos. Pure Math. Amer. Math. Soc., 48, Amer. Math. Soc., Providence, RI, 1988, 61–132 | DOI | MR

[2] Dunkl C. F., “Hankel transforms associated to finite reflections groups”, Contemp. Math., 138, 1992, 123–138 | DOI | MR | Zbl

[3] Rösler M., “Dunkl operators. Theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, 2002, 93–135 | DOI | MR

[4] Salem Ben Saïd, Kobayashi T., Ørsted B., “Laguerre semigroup and Dunkl operators”, Compos. Math., 148:4 (2012), 1265–1336 | DOI | MR | Zbl

[5] Kobayashi T., Mano G., “The Schrödinger model for the minimal representation of the indefinite orthogonal group $O(p;q)$”, Memoirs of the American Mathematical Societies, 212, no. 1000, Amer. Math. Soc., Providence, RI, 2011 | MR

[6] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 | DOI | MR | Zbl

[7] Trimèche K., “Paley–Wiener Theorems for the Dunkl transform and Dunkl translation operators”, Integral Transform. Spec. Funct., 13 (2002), 17–38 | DOI | MR | Zbl

[8] Rösler M., “A positive radial product formula for the Dunkl kernel”, Trans. Amer. Math. Soc., 355 (2003), 2413–2438 | DOI | MR | Zbl

[9] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Positive $L^p$-bounded Dunkl-type generalized translation operator and its applications”, Constr. Approx., 49:3 (2019), 555–605 | DOI | MR | Zbl

[10] Thangavelu S., Xu Y., “Convolution operator and maximal function for Dunkl transform”, J. d'Analyse. Math., 97 (2005), 25–55 | DOI | MR

[11] Salem Ben Sa\"{i}d, Deleaval L., “Translation operator and maximal function for the $(k,1)$-generalized Fourier transform”, Journal of Functional Analysis, 279:8 (2020), 108706 | DOI | MR | Zbl

[12] Gorbachev D. V., Ivanov V. I., Tikhonov S. Yu., “Pitt's Inequalities and Uncertainty Principle for Generalized Fourier Transform”, International Mathematics Research Notices, 2016:23 (2016), 7179–7200 | DOI | MR | Zbl

[13] Johansen T. R., “Weighted inequalities and uncertainty principles for the (k; a)-generalized Fourier transform”, Internat. J. Math., 27:3 (2016), 1650019 | DOI | MR | Zbl

[14] Vatson G. N., Teoriya besselevykh funktsii, IL, M., 1949, 799 pp.

[15] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 2, Preobrazovaniya Besselya. Integraly, Nauka, M., 1970, 328 pp.

[16] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredelenii i analiz Fure, Mir, M., 1986, 464 pp.

[17] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964, 412 pp. | MR