A discrete approach for solving the variation problem of the density functional theory in real space
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 72-84

Voir la notice de l'article provenant de la source Math-Net.Ru

The author has developed a method of solving the variation problem of the density functional theory within the framework of the orbital-free approach with the generalized gradient approximation. The method is based on calculating the exchange -correlation potential using an iterative procedure. Test calculations for two-atom systems have shown that our approach allows the coupling energy of atoms and equilibrium interatomic distance in dimers to be found with about the same accuracy as the Kohn-Sham method, but much faster.
Keywords: orbital-free, density functional, GGA-potential.
@article{CHEB_2020_21_4_a7,
     author = {V. G. Zavodinsk{\cyru} and O. A. Gorkusha},
     title = {A discrete approach for solving the variation problem of the density functional theory in real space},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {72--84},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/}
}
TY  - JOUR
AU  - V. G. Zavodinskу
AU  - O. A. Gorkusha
TI  - A discrete approach for solving the variation problem of the density functional theory in real space
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 72
EP  - 84
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/
LA  - ru
ID  - CHEB_2020_21_4_a7
ER  - 
%0 Journal Article
%A V. G. Zavodinskу
%A O. A. Gorkusha
%T A discrete approach for solving the variation problem of the density functional theory in real space
%J Čebyševskij sbornik
%D 2020
%P 72-84
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/
%G ru
%F CHEB_2020_21_4_a7
V. G. Zavodinskу; O. A. Gorkusha. A discrete approach for solving the variation problem of the density functional theory in real space. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 72-84. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/