Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_4_a7, author = {V. G. Zavodinsk{\cyru} and O. A. Gorkusha}, title = {A discrete approach for solving the variation problem of the density functional theory in real space}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {72--84}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/} }
TY - JOUR AU - V. G. Zavodinskу AU - O. A. Gorkusha TI - A discrete approach for solving the variation problem of the density functional theory in real space JO - Čebyševskij sbornik PY - 2020 SP - 72 EP - 84 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/ LA - ru ID - CHEB_2020_21_4_a7 ER -
%0 Journal Article %A V. G. Zavodinskу %A O. A. Gorkusha %T A discrete approach for solving the variation problem of the density functional theory in real space %J Čebyševskij sbornik %D 2020 %P 72-84 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/ %G ru %F CHEB_2020_21_4_a7
V. G. Zavodinskу; O. A. Gorkusha. A discrete approach for solving the variation problem of the density functional theory in real space. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 72-84. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/
[1] Hohenberg H., Kohn W., “Inhomogeneous Electron Gas”, Physical Review, 136 (1964), B864–B871 | DOI | MR
[2] Kohn W., Sham J. L., “Self-consistent equations including exchange and correlation effects”, Phys. Rev., 140 (1965), A1133–A1138 | DOI | MR
[3] Garciá- González P., Alvarellos J. E., Chacón E., “Nonlocal symmetrized kinetic- energy density functional: Application to simple surfaces”, Phys. Rev., 57 (1998), 4857–4862 | DOI
[4] Gomez S., Gonzalez L. E., Gonzalez D. J., Stott M. J., Dalgic S., Silbert M. J., “Orbital free ab initio molecular dynamic study of expanded liquid Cs”, Non-Cryst. Solids, 250–252 (1999), 163–167 | DOI | MR
[5] Wang Y. A, Carter E. A., “Orbital- free kinetic- energy density functional theory”, Theoretical Methods in Condensed Phase Chemistry, ed. Schwartz S.D., Springer, Dordrecht, 2002, 117–184 | DOI | MR
[6] Huajie Chen, Aihui Zhou, “Orbital- free density functional theory for molecular structure calculations”, Numerical Mathematics: Theory, Methods and Applications, 2008, no. 1, 1–28 | MR | Zbl
[7] Hung L., Carter E. A., “Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics”, Chemical Physics Letters, 475 (2009), 163–170 | DOI
[8] Karasiev V. V., Chakraborty D., Trickey S. B., “Progress on New Approaches to Old Ideas: Orbital- Free Density Functionals”, Many-Electron Approaches in Physics, Chemistry and Mathematics, Mathematical Physics Studies, eds. Bach V., Delle S. L., Springer, Dordrecht, 2014, 113–135 | DOI | MR
[9] Sarry A. M., Sarry M. F., “To the density functional theory”, Physics of Solid State, 54:6 (2012), 1315–1322 | DOI
[10] Bobrov V. B., Trigger S. A., “The problem of the universal density functional and the density matrix functional theory”, Journal of Experimental and Theoretical Physics, 116:4 (2013), 635–640 | DOI
[11] Zavodinsky V. G., Gorkusha O. A., “A new Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles”, Modeling and Numerical Simulation of Material Science, 2015, no. 5, 39–47 | DOI
[12] Zavodinsky V. G., Gorkusha O. A., “Development of an orbital free approach for simulation of multiatomic nanosystems with covalent bonds”, Nanosystems: Physics, Chemistry, Mathematics, 7:3 (2016), 427–432 | DOI | MR
[13] Zavodinsky V. G., Gorkusha O. A., “Development of the orbital free approach for heteroatomic systems”, Nanosystems: Physics, Chemistry, Mathematics, 7:6 (2016), 1010–1016 | DOI | Zbl
[14] Zavodinsky V. G., Gorkusha O. A., “New Orbital Free Simulation Method Based on the Density Functional Theory”, Applied and Computational Mathematics, 6:4 (2017), 189–195 | DOI
[15] Zavodinsky V. G., Gorkusha O. A., “Orbital- free modelling method for materials contained atoms with d- electrons”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 3:7 (2018), 57–62
[16] Zavodinsky V. G., Gorkusha O. A., “On a possibility to develop a full–potential orbital–free modeling approach”, Nanosystems: Physics, Chemistry, Mathematics, 2019, no. 4, 402–409 | DOI
[17] Gorkusha O. A., Zavodinskii V. G., “O vychislenii potentsiala v mnogoatomnykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 59:2 (2019), 325–333 | DOI | MR | Zbl
[18] Fuchs M., Scheffler M., “Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory”, Computational Physics Communications, 119 (1999), 67–98 | DOI | MR | Zbl
[19] http://elk.sourceforge.net
[20] Parthasarathy V. N., Graichen C. M., Hathaway A. F., “A comparison of Tetrahedron Quality Measures”, Finite Elements in Analesis and Design, 15 (1993), 255–261 | DOI
[21] Huber K. R., Herzberg G., Molecular Spectra and Molecular Structure, v. IV, Constants of Diatomic Molecules, Litton Educational Publishing, N.Y., 1979, 732 pp.