A discrete approach for solving the variation problem of the density functional theory in real space
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 72-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author has developed a method of solving the variation problem of the density functional theory within the framework of the orbital-free approach with the generalized gradient approximation. The method is based on calculating the exchange -correlation potential using an iterative procedure. Test calculations for two-atom systems have shown that our approach allows the coupling energy of atoms and equilibrium interatomic distance in dimers to be found with about the same accuracy as the Kohn-Sham method, but much faster.
Keywords: orbital-free, density functional, GGA-potential.
@article{CHEB_2020_21_4_a7,
     author = {V. G. Zavodinsk{\cyru} and O. A. Gorkusha},
     title = {A discrete approach for solving the variation problem of the density functional theory in real space},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {72--84},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/}
}
TY  - JOUR
AU  - V. G. Zavodinskу
AU  - O. A. Gorkusha
TI  - A discrete approach for solving the variation problem of the density functional theory in real space
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 72
EP  - 84
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/
LA  - ru
ID  - CHEB_2020_21_4_a7
ER  - 
%0 Journal Article
%A V. G. Zavodinskу
%A O. A. Gorkusha
%T A discrete approach for solving the variation problem of the density functional theory in real space
%J Čebyševskij sbornik
%D 2020
%P 72-84
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/
%G ru
%F CHEB_2020_21_4_a7
V. G. Zavodinskу; O. A. Gorkusha. A discrete approach for solving the variation problem of the density functional theory in real space. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 72-84. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a7/

[1] Hohenberg H., Kohn W., “Inhomogeneous Electron Gas”, Physical Review, 136 (1964), B864–B871 | DOI | MR

[2] Kohn W., Sham J. L., “Self-consistent equations including exchange and correlation effects”, Phys. Rev., 140 (1965), A1133–A1138 | DOI | MR

[3] Garciá- González P., Alvarellos J. E., Chacón E., “Nonlocal symmetrized kinetic- energy density functional: Application to simple surfaces”, Phys. Rev., 57 (1998), 4857–4862 | DOI

[4] Gomez S., Gonzalez L. E., Gonzalez D. J., Stott M. J., Dalgic S., Silbert M. J., “Orbital free ab initio molecular dynamic study of expanded liquid Cs”, Non-Cryst. Solids, 250–252 (1999), 163–167 | DOI | MR

[5] Wang Y. A, Carter E. A., “Orbital- free kinetic- energy density functional theory”, Theoretical Methods in Condensed Phase Chemistry, ed. Schwartz S.D., Springer, Dordrecht, 2002, 117–184 | DOI | MR

[6] Huajie Chen, Aihui Zhou, “Orbital- free density functional theory for molecular structure calculations”, Numerical Mathematics: Theory, Methods and Applications, 2008, no. 1, 1–28 | MR | Zbl

[7] Hung L., Carter E. A., “Accurate Simulations of Metals at the Mesoscale: Explicit Treatment of 1 Million Atoms with Quantum Mechanics”, Chemical Physics Letters, 475 (2009), 163–170 | DOI

[8] Karasiev V. V., Chakraborty D., Trickey S. B., “Progress on New Approaches to Old Ideas: Orbital- Free Density Functionals”, Many-Electron Approaches in Physics, Chemistry and Mathematics, Mathematical Physics Studies, eds. Bach V., Delle S. L., Springer, Dordrecht, 2014, 113–135 | DOI | MR

[9] Sarry A. M., Sarry M. F., “To the density functional theory”, Physics of Solid State, 54:6 (2012), 1315–1322 | DOI

[10] Bobrov V. B., Trigger S. A., “The problem of the universal density functional and the density matrix functional theory”, Journal of Experimental and Theoretical Physics, 116:4 (2013), 635–640 | DOI

[11] Zavodinsky V. G., Gorkusha O. A., “A new Orbital-Free Approach for Density Functional Modeling of Large Molecules and Nanoparticles”, Modeling and Numerical Simulation of Material Science, 2015, no. 5, 39–47 | DOI

[12] Zavodinsky V. G., Gorkusha O. A., “Development of an orbital free approach for simulation of multiatomic nanosystems with covalent bonds”, Nanosystems: Physics, Chemistry, Mathematics, 7:3 (2016), 427–432 | DOI | MR

[13] Zavodinsky V. G., Gorkusha O. A., “Development of the orbital free approach for heteroatomic systems”, Nanosystems: Physics, Chemistry, Mathematics, 7:6 (2016), 1010–1016 | DOI | Zbl

[14] Zavodinsky V. G., Gorkusha O. A., “New Orbital Free Simulation Method Based on the Density Functional Theory”, Applied and Computational Mathematics, 6:4 (2017), 189–195 | DOI

[15] Zavodinsky V. G., Gorkusha O. A., “Orbital- free modelling method for materials contained atoms with d- electrons”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 3:7 (2018), 57–62

[16] Zavodinsky V. G., Gorkusha O. A., “On a possibility to develop a full–potential orbital–free modeling approach”, Nanosystems: Physics, Chemistry, Mathematics, 2019, no. 4, 402–409 | DOI

[17] Gorkusha O. A., Zavodinskii V. G., “O vychislenii potentsiala v mnogoatomnykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 59:2 (2019), 325–333 | DOI | MR | Zbl

[18] Fuchs M., Scheffler M., “Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory”, Computational Physics Communications, 119 (1999), 67–98 | DOI | MR | Zbl

[19] http://elk.sourceforge.net

[20] Parthasarathy V. N., Graichen C. M., Hathaway A. F., “A comparison of Tetrahedron Quality Measures”, Finite Elements in Analesis and Design, 15 (1993), 255–261 | DOI

[21] Huber K. R., Herzberg G., Molecular Spectra and Molecular Structure, v. IV, Constants of Diatomic Molecules, Litton Educational Publishing, N.Y., 1979, 732 pp.