Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_4_a6, author = {V. G. Durnev and O. V. Zetkina and A. I. Zetkina}, title = {On ``simple'' algorithmically undecidable fragments of elementary theory of an infinitely generated free semigroup}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {56--71}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a6/} }
TY - JOUR AU - V. G. Durnev AU - O. V. Zetkina AU - A. I. Zetkina TI - On ``simple'' algorithmically undecidable fragments of elementary theory of an infinitely generated free semigroup JO - Čebyševskij sbornik PY - 2020 SP - 56 EP - 71 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a6/ LA - ru ID - CHEB_2020_21_4_a6 ER -
%0 Journal Article %A V. G. Durnev %A O. V. Zetkina %A A. I. Zetkina %T On ``simple'' algorithmically undecidable fragments of elementary theory of an infinitely generated free semigroup %J Čebyševskij sbornik %D 2020 %P 56-71 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a6/ %G ru %F CHEB_2020_21_4_a6
V. G. Durnev; O. V. Zetkina; A. I. Zetkina. On ``simple'' algorithmically undecidable fragments of elementary theory of an infinitely generated free semigroup. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 56-71. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a6/
[1] Quine W., “Concatenation as a basis for arithmetic”, J. Symbolic Logic, 11 (1946), 105–114 | DOI | MR | Zbl
[2] Durnev V. G., “O pozitivnoi teorii svobodnoi polugruppy”, Voprosy teorii grupp i polugrupp, Tulsk. gos. ped. in-t. imeni L. N. Tolstogo, Tula, 1972, 122–172 | MR
[3] Durnev V. G., “Pozitivnaya teoriya svobodnoi polugruppy”, DAN SSSR, 211:4 (1973), 772–774 | MR | Zbl
[4] Marchenkov S. S., “Nerazreshimost pozitivnoi $\forall\exists$-teorii svobodnoi polugruppy”, Sib. matem. zhurn., 23:1 (1982), 196–198 | MR | Zbl
[5] Durnev V. G., “Nerazreshimost pozitivnoi $\forall\exists^3$-teorii svobodnoi polugruppy”, Sib. matem. zhurn., 36:5 (1995), 1067–1080 | MR | Zbl
[6] Kosovskii N. K., Elementy matematicheskoi logiki i ee prilozheniya k teorii subrekursivnykh algoritmov, Izd-vo LGU, L., 1981, 192 pp. | MR
[7] Karhumaki J., Mignosi F., Plandowski W., “On the expressibility of languages by word equations with a bounded number of variables”, Bull. Belg. Math. Soc., 8:2 (2001), 293–303 | MR
[8] Lothaire M., Algebraic Combinatorics on Words, Cambridge Univ. Press, 2002, 504 pp. | MR | Zbl
[9] Makanin G. S., “Problema razreshimosti uravnenii v svobodnoi polugruppe”, Matematicheskii sbornik, 103(145):6 (1977), 147–236 | Zbl
[10] Taimanov A. D., Khmelevskii Yu. I., “Razreshimost universalnoi teorii svobodnoi polugruppy”, Sib. matem. zhurn., 21:1 (1980), 228–230 | MR | Zbl
[11] Merzlyakov Yu. I., “Pozitivnye formuly na svobodnykh gruppakh”, Algebra i logika, 5:4 (1966), 25–42 | Zbl
[12] Vazhenin Yu. M., Rozenblat B. V., “Razreshimost pozitivnoi teorii schetnoporozhdennoi polugruppy”, Matem. sbornik, 116(158):1(9) (1981), 120–127 | MR | Zbl
[13] Makanin G. S., “Razreshimost universalnoi i pozitivnoi teorii svobodnoi gruppy”, Izv. AN SSSR. Seriya matem., 1984, no. 2, 735–749
[14] Novikov P. S., “Ob algoritmicheskoi nerazreshimosti problemy tozhdestva slov v teorii grupp”, Trudy MIAN, 44, 1955 | MR | Zbl
[15] Borisov V. V., “Prostye primery grupp s nerazreshimoi problemoi tozhdestva”, Matem. zametki, 6:5 (1969), 521–532 | Zbl
[16] Matiyasevich Yu. V., “Prostye primery nerazreshimykh assotsiativnykh ischislenii”, Dokl. AN SSSR, 173:6 (1967), 1264–1266 | Zbl
[17] Schulz Klaus U., Makanin's Algorithm — Two Improvements and a generalization, Habilitationsschrift, Wilhelm-Schickard-Institut fur Informatik, 1990, 106 pp.
[18] Peryazev N. A., O pozitivnoi ekvivalentnosti svobodnykh polugrupp, Izd-vo Irkutskogo VTs SO AN SSSR, Irkutsk, 1986, 14 pp.