Novel bounds of algebraic Nikol'skii constant
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 45-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M_{n}=\sup_{P\in \mathcal{P}_{n}\setminus \{0\}} \frac{\max_{x\in [-1,1]}|P(x)|}{\int_{-1}^{1}|P(x)| dx}$ be the Nikol'skii constant between the uniform and integral norms for algebraic polynomials with complex coefficients of degree at most $n$. D. Amir and Z. Ziegler (1976) proved that $0.125(n+1)^{2}\le M_{n}\le 0.5(n+1)^{2}$ for $n\ge 0$. The same upper bound was obtained by T.K. Ho (1976). F. Dai, D. Gorbachev, and S. Tikhonov (2019–2020) refined this result by establishing that $M_{n}=Mn^{2}+o(n^{2})$ for $n\to \infty$, where $M\in (0.141,0.192)$ is the sharp Nikol'skii constant for entire functions of exponential spherical type in the space $L^{1}(\mathbb{R}^{2})$ and functions of exponential type in $L^{1}(\mathbb{R})$ with weight $|x|$. We prove that for arbitrary $n\ge 0$ one has $M(n+1)^{2}\le M_{n}\le M(n+2)^{2}$, where $M\in (0.1410,0.1411)$. This statement also allows us to refine the exact Jackson–Nikol'skii constant for polynomials on the Euclidean sphere $\mathbb{S}^{2}$. The proof is based on the relationship between the algebraic Nikol'skii constants and the Bernstein–Nikol'skii trigonometric constants and our estimates of these constants (2018–2019). We also apply the characterization of the extremal algebraic polynomial obtained by D. Amir and Z. Ziegler (1976), V.V. Arestov and M.V. Deikalova (2015). Using this characterization, we compose a trigonometric system for determining the zeros of an extremal polynomial, which we solve approximately with the required accuracy using Newton's method.
Keywords: algebraic polynomial, trigonometric polynomial, the Nikolskii constant, the Bernstein inequality.
@article{CHEB_2020_21_4_a5,
     author = {D. V. Gorbachev and I. A. Martyanov},
     title = {Novel bounds of algebraic {Nikol'skii} constant},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a5/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - I. A. Martyanov
TI  - Novel bounds of algebraic Nikol'skii constant
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 45
EP  - 55
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a5/
LA  - ru
ID  - CHEB_2020_21_4_a5
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A I. A. Martyanov
%T Novel bounds of algebraic Nikol'skii constant
%J Čebyševskij sbornik
%D 2020
%P 45-55
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a5/
%G ru
%F CHEB_2020_21_4_a5
D. V. Gorbachev; I. A. Martyanov. Novel bounds of algebraic Nikol'skii constant. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 45-55. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a5/

[1] Andreev N. N., Konyagin S. V., Popov A. Yu., “Ekstremalnye zadachi dlya funktsii s malym nositelem”, Matem. zametki, 60:3 (1996), 323–332 ; 68:3 (2000), 479–479 | DOI | MR | Zbl | MR | Zbl

[2] Andreev N. N., Konyagin S. V., Popov A. Yu., “Pismo v redaktsiyu”, Matem. zametki, 68:3 (2000), 479 | DOI | MR | Zbl

[3] Geronimus Ya. L., “Ob odnoi ekstremalnoi zadache Chebysheva”, Izv. AN SSSR. Ser. matem., 2:4 (1938), 445–456

[4] Gorbachev D. V., “Integralnaya zadacha Konyagina i $(C,L)$-konstanty Nikolskogo”, Trudy IMM UrO RAN, 11, no. 2, 2005, 72–91 | Zbl

[5] Gorbachev D. V., Martyanov I. A., “O vzaimosvyazi konstant Nikolskogo dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sb., 19:2 (2018), 80–89 | DOI | MR | Zbl

[6] Gorbachev D. V., Martyanov I. A., “Vzaimosvyaz mezhdu konstantami Nikolskogo-Bernshteina dlya trigonometricheskikh polinomov i tselykh funktsii eksponentsialnogo tipa”, Chebyshevskii sbornik, 20:3 (2019), 143–153 | DOI | MR | Zbl

[7] Gorbachev D. V., Martyanov I. A., “Pismo v redaktsiyu”, Chebyshevskii sbornik, 21:3 (2020), 336–338 | DOI | MR | Zbl

[8] Ibragimov I. I., “Ekstremalnye zadachi v klasse trigonometricheskikh polinomov”, Dokl. AN SSSR, 121:3 (1958), 415–417 | Zbl

[9] Ivanov V. I., “Nekotorye ekstremalnye svoistva polinomov i obratnye neravenstva teorii priblizheniya”, Priblizhenie funktsii polinomami i splainami, Sbornik statei, Tr. MIAN SSSR, 145, 1980, 79–110 | Zbl

[10] Konyagin S. V., “Otsenki proizvodnykh ot mnogochlenov”, Dokl. AN SSSR, 243:5 (1978), 1116–1118 | MR | Zbl

[11] Taikov L. V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, UMN, 20:3 (1965), 205–211 | MR | Zbl

[12] Amir D., Ziegler Z., “Polynomials of extremal $L_p$-norm on the $L_\infty$-unit sphere”, J. Approx. Theory, 18 (1976), 86–98 | DOI | MR | Zbl

[13] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_{q}$-norm with ultraspherical weight of algebraic polynomials on an interval”, Comput. Methods Funct. Theory, 15:4 (2015), 689–708 | DOI | MR | Zbl

[14] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_{q}$-norm with Jacobi weight of algebraic polynomials on an interval”, Anal. Math., 42:2 (2016), 91–120 | DOI | MR | Zbl

[15] Carneiro E., Milinovich M. B., Soundararajan K., “Fourier optimization and prime gaps”, Comment. Math. Helv., 94 (2019), 533–568 | DOI | MR | Zbl

[16] Dai F., Gorbachev D., Tikhonov S., Estimates of the asymptotic Nikolskii constants for spherical polynomials, arXiv: 1907.03832 | MR

[17] Dai F., Gorbachev D., Tikhonov S., “Nikolskii constants for polynomials on the unit sphere”, J. d'Anal. Math., 140:1 (2020), 161–185 | DOI | MR | Zbl

[18] Ganzburg M. I., “Sharp constants in V.A. Markov–Bernstein type inequalities of different metrics”, J. Approx. Theory, 215 (2017), 92–105 | DOI | MR | Zbl

[19] Ganzburg M. I., “Sharp constants of approximation theory. III. Certain polynomial inequalities of different metrics on convex sets”, J. Approx. Theory, 252 (2020) | DOI | MR | Zbl

[20] Ganzburg M. I., Tikhonov S. Y., “On sharp constants in Bernstein–Nikolskii inequalities”, Constr. Approx., 45:3 (2017), 449–466 | DOI | MR | Zbl

[21] Hörmander L., Bernhardsson B., “An extension of Bohr's inequality”, Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math., 29, 1993, 179–194 | MR | Zbl

[22] Jackson D., “Certain problems of closest approximation”, Bull. Am. Math. Soc., 39 (1933), 889–906 | DOI | MR | Zbl

[23] Levin E., Lubinsky D., “Asymptotic behavior of Nikolskii constants for polynomials on the unit circle”, Comput. Methods Funct. Theory, 15:3 (2015), 459–468 | DOI | MR | Zbl

[24] Milovanović G.V., Mitrinović D.S., Rassias Th.M., Topics in polynomials: Extremal problems, inequalities, zeros, World Scientific Publ. Co, Singapore, 1994 | MR | Zbl

[25] Simonov I. E., Glazyrina P. Y., “Sharp Markov–Nikolskii inequality with respect to the uniform norm and the integral norm with Chebyshev weight”, J. Approx. Theory, 192 (2015), 69–81 | DOI | MR | Zbl

[26] Ziegler Z., “Minimizing the $L_{p,\infty}$-distortion of trigonometric polynomials”, J. Math. Anal. Appl., 61 (1977), 426–431 | DOI | MR | Zbl