On the evolution of mathematical models of friction sliding of solids
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 327-332

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper provides information about the evolution of mathematical models of sliding friction of solids. It is Shown that taking into account deviations from the Leonardo da Vinci-Amonton-Coulomb law, it is necessary to Refine it using the correction function of the normal force. A mathematical model of the generalized sliding friction law has been created that takes into account the abrupt changes in the linear dependence of the friction force on the normal force.
Keywords: Leonardo da Vinci–Amonton–Coulomb law, mathematical model of friction, gen-eralized law of friction, abrupt change.
@article{CHEB_2020_21_4_a26,
     author = {A. D. Breki and S. G. Chulkin and A. E. Gvozdev and O. V. Kuzovleva},
     title = {On the evolution of mathematical models of friction sliding of solids},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {327--332},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a26/}
}
TY  - JOUR
AU  - A. D. Breki
AU  - S. G. Chulkin
AU  - A. E. Gvozdev
AU  - O. V. Kuzovleva
TI  - On the evolution of mathematical models of friction sliding of solids
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 327
EP  - 332
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a26/
LA  - ru
ID  - CHEB_2020_21_4_a26
ER  - 
%0 Journal Article
%A A. D. Breki
%A S. G. Chulkin
%A A. E. Gvozdev
%A O. V. Kuzovleva
%T On the evolution of mathematical models of friction sliding of solids
%J Čebyševskij sbornik
%D 2020
%P 327-332
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a26/
%G ru
%F CHEB_2020_21_4_a26
A. D. Breki; S. G. Chulkin; A. E. Gvozdev; O. V. Kuzovleva. On the evolution of mathematical models of friction sliding of solids. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 327-332. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a26/