On the weak universality theorem
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 308-313.

Voir la notice de l'article provenant de la source Math-Net.Ru

TThis paper is devoted to the approximation of a quadratic algebraic lattice by an integer lattice. It calculates the distances between a quadratic algebraic lattice and an integer lattice when they are given by the numerator and denominator of a suitable fraction to the square root of the discriminant $d$ — of a square-free natural number. The results of this work allow us to study questions about the best approximations of quadratic algebraic lattices by integer lattices.
Keywords: quadratic fields, approximation of algebraic grids, quality function, generalized parallelepipedal grid.
@article{CHEB_2020_21_4_a24,
     author = {A. V. Kirilina},
     title = {On the weak universality theorem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {308--313},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a24/}
}
TY  - JOUR
AU  - A. V. Kirilina
TI  - On the weak universality theorem
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 308
EP  - 313
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a24/
LA  - ru
ID  - CHEB_2020_21_4_a24
ER  - 
%0 Journal Article
%A A. V. Kirilina
%T On the weak universality theorem
%J Čebyševskij sbornik
%D 2020
%P 308-313
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a24/
%G ru
%F CHEB_2020_21_4_a24
A. V. Kirilina. On the weak universality theorem. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 308-313. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a24/

[1] Voronin S. M., “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. mat., 39:3 (1975), 475–486 | MR | Zbl

[2] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994, 376 pp. | MR

[3] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968, 618 pp.

[4] Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrova I. Yu., Balaba I. N., Dobrovolskii N. N., Dobrovolskii N. M., Dobrovolskaya L. P., Rodionov A. V., Pikhtilkova O. A., “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sb., 18:4 (2017), 6–85 | DOI | MR | Zbl

[5] N. N. Dobrovolskii, “Dzeta-funktsiya monoidov naturalnykh chisel s odnoznachnym razlozheniem na prostye mnozhiteli”, Chebyshevskii sb., 18:4 (2017), 187–207 | DOI | MR

[6] Dobrovolskii N. N., “O monoidakh naturalnykh chisel s odnoznachnym razlozheniem na prostye elementy”, Chebyshevskii sb., 19:1 (2018), 79–105 | DOI | MR | Zbl

[7] Dobrovolskii N. N., “Dzeta-funktsiya monoidov s zadannoi abstsissoi absolyutnoi skhodimosti”, Chebyshevskii sb., 19:2 (2018), 142–150 | DOI | MR | Zbl

[8] Dobrovolskii N. N., “Odna modelnaya dzeta-funktsiya monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 148–163 | DOI | Zbl

[9] Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., Balaba I. N., Rebrova I. Yu., “Gipoteza o "zagraditelnom ryade" dlya dzeta-funktsii monoidov s eksponentsialnoi posledovatelnostyu prostykh”, Chebyshevskii sb., 19:1 (2018), 106–123 | DOI | MR | Zbl

[10] Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., Balaba I. N., Rebrova I. Yu., “Algebra ryadov Dirikhle monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 180–196 | MR | Zbl

[11] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O kolichestve prostykh elementov v nekotorykh monoidakh naturalnykh chisel”, Chebyshevckii sbornik, 19:2 (2018), 123–141 | DOI | Zbl

[12] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O monoide kvadratichnykh vychetov”, Chebyshevckii sbornik, 19:3 (2018), 95–108 | DOI | Zbl

[13] Laurinchikas A. P., Matsumoto K., Steuding I., “Universalnost L-funktsii, svyazannykh s novymi formami”, Izv. RAN. Ser. matem., 67:1 (2003), 83–98 | DOI | MR

[14] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974, 188 pp.

[15] Chudakov N. G., Vvedenie v teoriyu $L$-funktsii Dirikhle, OGIZ, M.–L., 1947, 204 pp. | MR