On the weak universality theorem
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 308-313

Voir la notice de l'article provenant de la source Math-Net.Ru

TThis paper is devoted to the approximation of a quadratic algebraic lattice by an integer lattice. It calculates the distances between a quadratic algebraic lattice and an integer lattice when they are given by the numerator and denominator of a suitable fraction to the square root of the discriminant $d$ — of a square-free natural number. The results of this work allow us to study questions about the best approximations of quadratic algebraic lattices by integer lattices.
Keywords: quadratic fields, approximation of algebraic grids, quality function, generalized parallelepipedal grid.
@article{CHEB_2020_21_4_a24,
     author = {A. V. Kirilina},
     title = {On the weak universality theorem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {308--313},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a24/}
}
TY  - JOUR
AU  - A. V. Kirilina
TI  - On the weak universality theorem
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 308
EP  - 313
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a24/
LA  - ru
ID  - CHEB_2020_21_4_a24
ER  - 
%0 Journal Article
%A A. V. Kirilina
%T On the weak universality theorem
%J Čebyševskij sbornik
%D 2020
%P 308-313
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a24/
%G ru
%F CHEB_2020_21_4_a24
A. V. Kirilina. On the weak universality theorem. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 308-313. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a24/