Linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients, obtained by minimizing the approximation error
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 243-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to determining the range of grid Peclet number values, for which the proposed scheme, representing a linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients, obtained by minimizing the approximation error, has higher accuracy than conventional schemes, including modifications Upwind Leapfrog difference scheme with limiters. The article obtained a limit on the time step for a difference scheme with weights at which the calculation error is in an acceptable range. It is shown that the proposed scheme, based on the basis of a linear combination of the Upwind and Standard Leapfrog difference schemes with weighting coefficients $2/3$ and $1/3$, respectively, obtained by minimizing the approximation error more precisely, the Upwind Leapfrog difference scheme with limiters solves the convection problem for small Courant numbers. Thus, the proposed modification of the Upwind Leapfrog difference scheme for the numerical solution of the diffusion-convection problem has higher accuracy than other schemes, for the values of the grid Peclet number in the range $2\le Pe\le 20$, which allows you to use this class of schemes for the numerical solution of problems of computational oceanology.
Keywords: transfer problem, Upwind Leapfrog difference scheme, Standard Leapfrog difference scheme, linear-weighted combination, increase accuracy.
@article{CHEB_2020_21_4_a20,
     author = {A. I. Sukhinov and A. E. Chistyakov and E. A. Protsenko and A. M. Atayan},
     title = {Linear combination of the {Upwind} and {Standard} {Leapfrog} difference schemes with weight coefficients, obtained by minimizing the approximation error},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {243--256},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a20/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. E. Chistyakov
AU  - E. A. Protsenko
AU  - A. M. Atayan
TI  - Linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients, obtained by minimizing the approximation error
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 243
EP  - 256
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a20/
LA  - ru
ID  - CHEB_2020_21_4_a20
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. E. Chistyakov
%A E. A. Protsenko
%A A. M. Atayan
%T Linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients, obtained by minimizing the approximation error
%J Čebyševskij sbornik
%D 2020
%P 243-256
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a20/
%G ru
%F CHEB_2020_21_4_a20
A. I. Sukhinov; A. E. Chistyakov; E. A. Protsenko; A. M. Atayan. Linear combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients, obtained by minimizing the approximation error. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 243-256. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a20/

[1] Alekseenko E., Roux B., Sukhinov A., Kotarba R., Fougere D., “Coastal hydrodynamics in a windy lagoon”, Computers and Fluids, 77 (2013), 24–35 | DOI

[2] A. V. Nikitina, A. I. Sukhinov, G. A. Ugolnitskii, A. B. Usov, A. E. Chistyakov, M. V. Puchkin, I. S. Semenov, “Optimalnoe upravlenie ustoichivym razvitiem pri biologicheskoi reabilitatsii Azovskogo morya”, Matem. modelirovanie, 28:7 (2016), 96–106 | MR

[3] A. I. Sukhinov, A. E. Chistyakov, E. V. Alekseenko, “Chislennaya realizatsiya trekhmernoi modeli gidrodinamiki dlya melkovodnykh vodoemov na supervychislitelnoi sisteme”, Matem. modelirovanie, 23:3 (2011), 3–21 | Zbl

[4] A. I. Sukhinov, D. S. Khachunts, A. E. Chistyakov, “Matematicheskaya model rasprostraneniya primesi v prizemnom sloe atmosfery pribrezhnoi zony i ee programmnaya realizatsiya”, Zh. vychisl. matem. i matem. fiz., 55:7 (2015), 1238–1254 | DOI | Zbl

[5] A. I. Sukhinov, Yu. V. Belova, A. E. Chistyakov, “Reshenie zadachi perenosa veschestv pri bolshikh chislakh Pekle”, Vych. met. programmirovanie, 18:4 (2017), 371–380

[6] Thomas J.P., Roe P. L., 11th AIAA Computational Fluid Dynamics Conference, AIAA paper 93-3382-CP (Orlando, Florida, July 6–9, 1993)

[7] S. C. Chang, X. Y. Wang, C. Y. Chow, New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems, NASA TM 106758, NASA, December 1994

[8] V. Yu. Glotov, V. M. Goloviznin, “Skhema KABARE dlya dvumernoi neszhimaemoi zhidkosti v peremennykh “skorost-davlenie””, Zh. vychisl. matem. i matem. fiz., 53:6 (2013), 898–913 | DOI | MR | Zbl

[9] Sukhinov A. I., Chistyakov A. E., Protsenko E. A., “O raznostnykh skhemakh kabare i krest”, Vych. met. programmirovanie, 20:2 (2019), 170–181

[10] A. A. Samarskii, “O regulyarizatsii raznostnykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 62–93

[11] A. A. Samarskii, “Klassy ustoichivykh skhem”, Zh. vychisl. matem. i matem. fiz., 7:5 (1967), 1096–1133 | MR

[12] R. P. Fedorenko, “Primenenie raznostnykh skhem vysokoi tochnosti dlya chislennogo resheniya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962) | Zbl

[13] A. I. Sukhinov, A. E. Chistyakov, M. V. Yakobovskii, “Tochnost chislennogo resheniya uravneniya diffuzii-konvektsii na osnove raznostnykh skhem vtorogo i chetvertogo poryadkov pogreshnosti approksimatsii”, Vestn. YuUrGU. Ser. Vych. matem. inform., 5:1 (2016), 47–62

[14] Comput. Math. Math. Phys., 40:5 (2000), 692–704 | MR

[15] Sukhinov A., Chistyakov A., Nikitina A. et al., “Modelling of oil spill spread”, 5th International Conference on Informatics, Electronics and Vision, ICIEV 2016, 1134–1139

[16] Sukhinov A. I., Nikitina A. V., Semenyakina A. A., Chistyakov A. E., “Complex of models, explicit regularized schemes of high-order of accuracy and applications for predictive modeling of after-math of emergency oil spill”, CEUR Workshop Proceedings, 1576 (2016), 308–319

[17] Boris N. Chetverushkin, “Resolution limits of continuous media models and their mathematical formulations”, Math. Models Comput. Simul., 5:3 (2013), 266–279 | DOI | MR

[18] Sukhinov A. I., Chistyakov A. E., Levin I. I. et al., “Solution of the problem of biological rehabilitation of shallow waters on multiprocessor computer system”, 5th International Conference on Informatics, Electronics and Vision, ICIEV 2016, 1128–1133

[19] V. A. Guschin, “Ob odnom semeistve kvazimonotonnykh raznostnykh skhem vtorogo poryadka approksimatsii”, Matem. modelirovanie, 28:2 (2016), 6–18

[20] V. M. Goloviznin, A. A. Samarskii, “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100 | MR | Zbl

[21] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Ispolzovanie razryvnogo metoda Galerkina pri reshenii zadach gazovoi dinamiki”, Matem. modelirovanie, 26:1 (2014), 17–32 | MR | Zbl

[22] I. V. Abalakin, A. N. Antonov, I. A. Graur, B. N. Chetverushkin, “Ispolzovanie algebraicheskoi modeli turbulentnosti dlya rascheta nestatsionarnykh techenii v okrestnosti vyemok”, Matem. modelirovanie, 12:1 (2000), 45–56 | Zbl

[23] Buzalo N., Ermachenko P., Bock T. et al., “Mathematical modeling of microalgae-mineralization-human structure within the environment regeneration system for the biosphere compatible city”, Procedia Engineering, 85 (2014), 84–93 | DOI

[24] A. I. Sukhinov, A. E. Chistyakov, E. F. Timofeeva, A. V. Shishenya, “Matematicheskaya model rascheta pribrezhnykh volnovykh protsessov”, Matem. modelirovanie, 24:8 (2012), 32–44 | Zbl

[25] Sukhinov A. I., Sukhinov A. A., “Reconstruction of 2001 Ecological Disaster in the Azov Sea on the Basis of Precise Hydrophysics Models”, Book Chapter, Parallel Computational Fluid Dynamics 2004: Multidisciplinary Applications, 2005, 231–238