Arithmetic properties of direct product of $p$-adic fields elements
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 227-242
Voir la notice de l'article provenant de la source Math-Net.Ru
The article considers the transcendence and algebraic independence problems, introduce statements and proofs of theorems for some kinds of elements from direct product of $p$-adic fields and polynomial estimation theorem. Let $\mathbb{Q}_p$ be the $p$-adic completion of $\mathbb{Q}$, $\Omega_{p}$ be the completion of the algebraic closure of $\mathbb{Q}_p$, $g=p_1p_2\ldots p_n$ be a composition of separate prime numbers, $\mathbb{Q}_g$ be the $g$-adic completion of $\mathbb{Q}$, in other words $\mathbb{Q}_{p_1}\oplus\ldots\oplus\mathbb{Q}_{p_n}$. The ring $\Omega_g\cong\Omega_{p_1}\oplus\ldots\oplus\Omega_{p_n}$, contains a subring $\mathbb{Q}_g$. The transcendence and algebraic independence over $\mathbb{Q}_g$ are under consideration. Here are appropriate theorems for numbers like $\alpha=\sum\limits_{j=0}^{\infty}a_{j}g^{r_{j}}$, where $a_{j}\in \mathbb Z_g,$ and non-negative rational numbers $r_{j}$ increase to strictly unbounded.
Keywords:
$p$-adic numbers, $g$-adic numbers, transcendence, algebraic independence.
@article{CHEB_2020_21_4_a19,
author = {A. S. Samsonov},
title = {Arithmetic properties of direct product of $p$-adic fields elements},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {227--242},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a19/}
}
A. S. Samsonov. Arithmetic properties of direct product of $p$-adic fields elements. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 227-242. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a19/