Local coordinate systems on quantum flag manifolds
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 171-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper consists of 3 sections. In the first section, we will give a brief introduction to the "Feigin's homomorphisms" and will see how they will help us to prove our main and fundamental theorems related to quantum Serre relations and screening operators. In the second section, we will introduce Local integral of motions as the space of invariants of nilpotent part of quantum affine Lie algebras and will find two and three-point invariants in the case of $U_q(\hat{sl_2}) $ by using Volkov's scheme. In the third section, we will introduce lattice Virasoro algebras as the space of invariants of Borel part $U_q(B_{+})$ of $U_q(g)$ for simple Lie algebra $g$ and will find the set of generators of Lattice Virasoro algebra connected to $sl_2$ and $U_q(sl_2)$. And as a new result, we found the set of some generators of lattice Virasoro algebra.
Keywords: Lattice W algebras, quantum groups, Feigin's homomorphisms.
@article{CHEB_2020_21_4_a16,
     author = {F. Razavinia},
     title = {Local coordinate systems on quantum flag manifolds},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {171--195},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a16/}
}
TY  - JOUR
AU  - F. Razavinia
TI  - Local coordinate systems on quantum flag manifolds
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 171
EP  - 195
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a16/
LA  - en
ID  - CHEB_2020_21_4_a16
ER  - 
%0 Journal Article
%A F. Razavinia
%T Local coordinate systems on quantum flag manifolds
%J Čebyševskij sbornik
%D 2020
%P 171-195
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a16/
%G en
%F CHEB_2020_21_4_a16
F. Razavinia. Local coordinate systems on quantum flag manifolds. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 171-195. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a16/

[1] Alekseev A., Faddeev L., Semenov-Tian-Shansky M., “Hidden quantum groups inside Kac-Moody algebra”, Communications in mathematical physics, 149:2 (1992), 335–345 | DOI | MR | Zbl

[2] Brown K., Goodearl K.R., Lectures on algebraic quantum groups, Birkhäuser, 2012 | MR

[3] Frenkel E., “Free field realizations in representation theory and conformal field theory”, Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1995, 1256–1269 | DOI | MR | Zbl

[4] Feigin B.L., talk at RIMS, 1992

[5] Gelfand I., Dickey L., “A Lie algebra structure in a formal variations calculus”, Functional Anal. Appl., 10 (1976), 16–22 | DOI | Zbl

[6] Iohara K., Malikov F., “Rings of skew polynomials and Gel'fand-Kirillov conjecture for quantum groups”, Communications in mathematical physics, 164:2 (1994), 217–237 | DOI | MR | Zbl

[7] Majid S., A quantum groups primer, London Mathematical Society Lecture Notes, 292, Cambridge University Press, 2002 | MR | Zbl

[8] Kac V.G., Infinite-dimensional Lie algebras, Cambridge university press, 1990 | MR | Zbl

[9] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer Science Business Media, 2012 | MR

[10] Kupershmidt B.A., Wilson G., “Conservation laws and symmetries of generalized sine-Gordon equations”, Communications in Mathematical Physics, 81:2 (1981), 189–202 | DOI | MR | Zbl

[11] Klimyk A., Schmüdgen K., Quantum groups and their representations, Springer Science Business Media, 2012

[12] Laugwitz R., Quantum Groups and Their Representations

[13] Pugay Y.P., “Lattice W algebras and quantum groups”, Theoretical and Mathematical Physics, 100:1 (1994), 900–911 | DOI | MR | Zbl

[14] Sklyanin E.K., “On an algebra generated by quadratic relations”, Usp. Mat. Nauk, 40 (1985), 214 | MR

[15] Stanley R.P., Enumerative combinatorics, Wadsworth Publ. Co., Belmont, CA, 1986 | Zbl