Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_4_a16, author = {F. Razavinia}, title = {Local coordinate systems on quantum flag manifolds}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {171--195}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a16/} }
F. Razavinia. Local coordinate systems on quantum flag manifolds. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 171-195. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a16/
[1] Alekseev A., Faddeev L., Semenov-Tian-Shansky M., “Hidden quantum groups inside Kac-Moody algebra”, Communications in mathematical physics, 149:2 (1992), 335–345 | DOI | MR | Zbl
[2] Brown K., Goodearl K.R., Lectures on algebraic quantum groups, Birkhäuser, 2012 | MR
[3] Frenkel E., “Free field realizations in representation theory and conformal field theory”, Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1995, 1256–1269 | DOI | MR | Zbl
[4] Feigin B.L., talk at RIMS, 1992
[5] Gelfand I., Dickey L., “A Lie algebra structure in a formal variations calculus”, Functional Anal. Appl., 10 (1976), 16–22 | DOI | Zbl
[6] Iohara K., Malikov F., “Rings of skew polynomials and Gel'fand-Kirillov conjecture for quantum groups”, Communications in mathematical physics, 164:2 (1994), 217–237 | DOI | MR | Zbl
[7] Majid S., A quantum groups primer, London Mathematical Society Lecture Notes, 292, Cambridge University Press, 2002 | MR | Zbl
[8] Kac V.G., Infinite-dimensional Lie algebras, Cambridge university press, 1990 | MR | Zbl
[9] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer Science Business Media, 2012 | MR
[10] Kupershmidt B.A., Wilson G., “Conservation laws and symmetries of generalized sine-Gordon equations”, Communications in Mathematical Physics, 81:2 (1981), 189–202 | DOI | MR | Zbl
[11] Klimyk A., Schmüdgen K., Quantum groups and their representations, Springer Science Business Media, 2012
[12] Laugwitz R., Quantum Groups and Their Representations
[13] Pugay Y.P., “Lattice W algebras and quantum groups”, Theoretical and Mathematical Physics, 100:1 (1994), 900–911 | DOI | MR | Zbl
[14] Sklyanin E.K., “On an algebra generated by quadratic relations”, Usp. Mat. Nauk, 40 (1985), 214 | MR
[15] Stanley R.P., Enumerative combinatorics, Wadsworth Publ. Co., Belmont, CA, 1986 | Zbl