Pairs of microweight tori in ${\operatorname{GL}}_n$
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 152-161

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present note we prove a reduction theorem for subgroups of the general linear group ${\operatorname{GL}}(n,T)$ over a skew-field $T$, generated by a pair of microweight tori of the same type. It turns out, that any pair of tori of residue $m$ is conjugate to such a pair in ${\operatorname{GL}}(3m,T)$, and the pairs that cannot be further reduced to ${\operatorname{GL}}(3m-1,T)$ form a single ${\operatorname{GL}}(3m,T)$-orbit. For the case $m=1$ this leaves us with the analysis of ${\operatorname{GL}}(2,T)$, that was carried through some two decades ago by the second author, Cohen, Cuypers and Sterk. For the next case $m=2$ this means that the only cases to be considered are ${\operatorname{GL}}(4,T)$ and ${\operatorname{GL}}(5,T)$. In these cases the problem can be fully resolved by (direct but rather lengthy) matrix calculations, which are relegated to a forthcoming paper by the authors.
Keywords: General linear group, unipotent root subgroups, semisimple root subgroups, $m$-tori, diagonal subgroup.
@article{CHEB_2020_21_4_a14,
     author = {V. V. Nesterov and N. A. Vavilov},
     title = {Pairs of microweight tori in ${\operatorname{GL}}_n$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {152--161},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a14/}
}
TY  - JOUR
AU  - V. V. Nesterov
AU  - N. A. Vavilov
TI  - Pairs of microweight tori in ${\operatorname{GL}}_n$
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 152
EP  - 161
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a14/
LA  - en
ID  - CHEB_2020_21_4_a14
ER  - 
%0 Journal Article
%A V. V. Nesterov
%A N. A. Vavilov
%T Pairs of microweight tori in ${\operatorname{GL}}_n$
%J Čebyševskij sbornik
%D 2020
%P 152-161
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a14/
%G en
%F CHEB_2020_21_4_a14
V. V. Nesterov; N. A. Vavilov. Pairs of microweight tori in ${\operatorname{GL}}_n$. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 152-161. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a14/