Pairs of microweight tori in ${\operatorname{GL}}_n$
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 152-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present note we prove a reduction theorem for subgroups of the general linear group ${\operatorname{GL}}(n,T)$ over a skew-field $T$, generated by a pair of microweight tori of the same type. It turns out, that any pair of tori of residue $m$ is conjugate to such a pair in ${\operatorname{GL}}(3m,T)$, and the pairs that cannot be further reduced to ${\operatorname{GL}}(3m-1,T)$ form a single ${\operatorname{GL}}(3m,T)$-orbit. For the case $m=1$ this leaves us with the analysis of ${\operatorname{GL}}(2,T)$, that was carried through some two decades ago by the second author, Cohen, Cuypers and Sterk. For the next case $m=2$ this means that the only cases to be considered are ${\operatorname{GL}}(4,T)$ and ${\operatorname{GL}}(5,T)$. In these cases the problem can be fully resolved by (direct but rather lengthy) matrix calculations, which are relegated to a forthcoming paper by the authors.
Keywords: General linear group, unipotent root subgroups, semisimple root subgroups, $m$-tori, diagonal subgroup.
@article{CHEB_2020_21_4_a14,
     author = {V. V. Nesterov and N. A. Vavilov},
     title = {Pairs of microweight tori in ${\operatorname{GL}}_n$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {152--161},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a14/}
}
TY  - JOUR
AU  - V. V. Nesterov
AU  - N. A. Vavilov
TI  - Pairs of microweight tori in ${\operatorname{GL}}_n$
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 152
EP  - 161
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a14/
LA  - en
ID  - CHEB_2020_21_4_a14
ER  - 
%0 Journal Article
%A V. V. Nesterov
%A N. A. Vavilov
%T Pairs of microweight tori in ${\operatorname{GL}}_n$
%J Čebyševskij sbornik
%D 2020
%P 152-161
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a14/
%G en
%F CHEB_2020_21_4_a14
V. V. Nesterov; N. A. Vavilov. Pairs of microweight tori in ${\operatorname{GL}}_n$. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 152-161. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a14/

[1] Blum-Smith B., “A rotation group whose subspace arrangement is not from a real reflection group”, Linear Algebra Appl., 581 (2019), 405–412 | DOI | MR | Zbl

[2] Cohen A. M., Cuypers H., Sterk H., “Linear groups generated by reflection tori”, Canad. J. Math., 51:6 (1999), 1149–1174 | DOI | MR | Zbl

[3] Hahn A. J., O'Meara O. T., The classical groups and K-theory, Springer, Berlin et al., 1989 | MR | Zbl

[4] Lange Ch., “Characterization of finite groups generated by reflections and rotations”, J. Topol., 9:4 (2016), 1109–1129 | DOI | MR | Zbl

[5] Lange Ch., Mikhailova M. A., “Classification of finite groups generated by reflections and rotations”, Transform. Groups, 21:4 (2016), 1155–1201 | DOI | MR | Zbl

[6] Vavilov N. A., “Podgruppy grupp Shevalle, soderzhaschie maksimalnyi tor”, Trudy Leningr. Mat. Obsch., 1 (1990), 64–109

[7] Vavilov N. A., “Geometriya $1$-torov v ${\operatorname{GL}}_n$”, Algebra i analiz, 19:3 (2007), 120–151

[8] Vavilov N. A., “Vesovye elementy grupp Shevalle”, Algebra i analiz, 20:1 (2008), 34–85

[9] Vavilov N. A., Nesterov V. V., “Geometriya mikrovesovykh torov”, Vladikavkazskii mat. zhurnal, 10:1 (2008), 10–23 | MR | Zbl

[10] Vavilov N. A., Pevzner I. M., “Troiki dlinnykh kornevykh podgrupp”, Zap. nauchn. sem. POMI, 343, 2007, 54–83

[11] Vavilov N. A., Semenov A. A., “Razlozhenie Bryua dlinnykh kornevykh torov v gruppakh Shevavlle”, Zap. nauch. semin. LOMI, 175, 1989, 12–23 | Zbl

[12] Vavilov N. A., Semenov A. A., “Dlinnye kornevye poluprostye elementy v gruppakh Shevalle”, Doklady Akad. nauk, ser. Matematika, 338:6 (1994), 725–727 | Zbl

[13] Vavilov N. A., Semenov A. A., “Dlinnye kornevye tory v gruppakh Shevalle”, Algebra i analiz, 24:3 (2012), 22–83

[14] Nesterov V. V., “Porozhdenie par korotkikh kornevykh podgrupp v gruppakh Shevalle”, Algebra i analiz, 16:6 (2004), 172–208

[15] Nesterov V. V., “Teoremy reduktsii dlya troek korotkikh kornevykh podgrupp v gruppakh Shevalle”, Zap. nauch. semin. POMI, 443, no. 4, 2016, 437–452

[16] Nesterov V. V., “Izvlechenie malorangovykh unipotentnykh elementov v ${\operatorname{GL}}(4,K)$”, Zapiski nauch. sem. POMI, 2020, 10 pp.

[17] Nesterov V. V., Vavilov V. V., Podgruppy, porozhdennye paroi $2$-torov v ${\operatorname{GL}}(n,K)$, in preparation, 2020