A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations
Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 140-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proves the strong compactness of the sequence $\{\tilde{c}^{ \varepsilon}(\boldsymbol{x},t)\}$ in $\mathbb{L}_{2}(\Omega_{T})$, $\Omega_{T}=\Omega\times(0,\\T)$, $\Omega\subset \mathbb{R}^{3}$, bounded in the space $\mathbb{W}^{1,0}_{2}(\Omega_{T})$ with the sequence of time derivatives $\Big\{ \displaystyle \frac{\partial}{\partial t}\big(\chi(\boldsymbol{x},t,\frac{\boldsymbol{x}}{\varepsilon})\Big.$ $\Big.\tilde{c}^{ \varepsilon}(\boldsymbol{x},t)\big) \Big\}$ bounded in the space $\mathbb{L}_{2}\big((0,T);\mathbb{W}^{-1}_{2}(\Omega)\big)$, where characteristic function $\chi(\boldsymbol{x},t,\boldsymbol{y})$ is $1$-periodic in a variable $\displaystyle \boldsymbol{y}\in Y= \left(-\frac{1}{2},\frac{1}{2} \right)^{3}\subset \mathbb{R}^{3}$. As an application we consider the homogenization of a diffusion-convection equation in non-periodic structure, given by $1$-periodic in $\boldsymbol{y}$ characteristic function $\chi(\boldsymbol{x},t,\boldsymbol{y})$ with a sequence of divergent-free velocities $\{\boldsymbol{v}^{\varepsilon}(\boldsymbol{x},t)\}$ weakly convergent in $\mathbb{L}_{2}(\Omega_{T})$.
Keywords: compactness lemma, homogenization, square-summable derivatives.
@article{CHEB_2020_21_4_a13,
     author = {A. M. Meirmanov and O. V. Galtsev},
     title = {A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {140--151},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a13/}
}
TY  - JOUR
AU  - A. M. Meirmanov
AU  - O. V. Galtsev
TI  - A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 140
EP  - 151
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a13/
LA  - ru
ID  - CHEB_2020_21_4_a13
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%A O. V. Galtsev
%T A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations
%J Čebyševskij sbornik
%D 2020
%P 140-151
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a13/
%G ru
%F CHEB_2020_21_4_a13
A. M. Meirmanov; O. V. Galtsev. A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 140-151. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a13/

[1] Aubin J. P., “Un théorème de compacité”, C. R. Acad. Sci, 256 (1963), 5042–5044 | MR | Zbl

[2] Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaire, Dunod, Paris, 1969, 576 pp. | MR

[3] Chen X., Jungel A., Liu J., “Note on Aubin-Lions-Dubinskii Lemmas”, Acta. Appl. Math., 133 (2014), 33–43 | DOI | MR | Zbl

[4] Meirmanov A., Zimin R., “Compactness result for periodic structures and its application to the homogenization of a diffusion-convection equation”, Electron. J. Diff. Equ., 2011 (2011), 1–11 https://ejde.math.txstate.edu/Volumes/2011/115/meirmanov.pdf | MR

[5] Meirmanov A., Shmarev S., “A compactness lemma of Aubin type and its application to a class of degenerate parabolic equations”, Electron. J. Diff. Equ., 2014 (2014), 1–13 https://ejde.math.txstate.edu/Volumes/2014/227/meirmanov.pdf | DOI | MR

[6] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and Quasi-linear Equations of Parabolic Type, Providence, Rhode Island, 1968, 667 pp. | MR | Zbl

[7] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[8] Jikov V. V., Kozlov S. M., Oleinik O. A., Homogenization of differential operators and integral functionals, Springer-Verlag, 1994, 570 pp. | MR | Zbl

[9] Acerbi E., Chiad`o V., Maso G., Percivale D., “An extension theorem from connected sets and homogenization in general periodic domains”, Nonlinear Anal., 5 (1992), 481–496 | DOI | MR | Zbl

[10] Meirmanov A., Mathematical models for poroelastic flow, Atlantis Press, Paris, 2014, 449 pp. | MR

[11] Rudin W., Principles of mathematical analysis, McGraw-Hill, 1976, 351 pp. | MR | Zbl

[12] Kolmogorov A. N., Fomin S. V., Introductory real analysis, Dover Publications, New York, 1975, 416 pp. | MR

[13] Adams R. A., Sobolev spaces, Academic Press, New York, 1975, 320 pp. | MR | Zbl

[14] Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaire, Dunon, Gauthier-Villar, Paris, 1969, 554 pp. | MR

[15] Mikhailov V. P., Gushchin A. K., “Additional chapters of the course “Equations of Mathematical Physics””, Lecture courses REC, 7, V.A. Steklov's Mathematical Institute, RAS, M., 2007, 146 pp. | Zbl

[16] Bensoussan A., Lions J., Papanicolau G., Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978, 699 pp. | MR