Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_4_a13, author = {A. M. Meirmanov and O. V. Galtsev}, title = {A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {140--151}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a13/} }
TY - JOUR AU - A. M. Meirmanov AU - O. V. Galtsev TI - A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations JO - Čebyševskij sbornik PY - 2020 SP - 140 EP - 151 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a13/ LA - ru ID - CHEB_2020_21_4_a13 ER -
%0 Journal Article %A A. M. Meirmanov %A O. V. Galtsev %T A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations %J Čebyševskij sbornik %D 2020 %P 140-151 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a13/ %G ru %F CHEB_2020_21_4_a13
A. M. Meirmanov; O. V. Galtsev. A compactness result for non-periodic structures and its application to homogenization of diffusion-convection equations. Čebyševskij sbornik, Tome 21 (2020) no. 4, pp. 140-151. http://geodesic.mathdoc.fr/item/CHEB_2020_21_4_a13/
[1] Aubin J. P., “Un théorème de compacité”, C. R. Acad. Sci, 256 (1963), 5042–5044 | MR | Zbl
[2] Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaire, Dunod, Paris, 1969, 576 pp. | MR
[3] Chen X., Jungel A., Liu J., “Note on Aubin-Lions-Dubinskii Lemmas”, Acta. Appl. Math., 133 (2014), 33–43 | DOI | MR | Zbl
[4] Meirmanov A., Zimin R., “Compactness result for periodic structures and its application to the homogenization of a diffusion-convection equation”, Electron. J. Diff. Equ., 2011 (2011), 1–11 https://ejde.math.txstate.edu/Volumes/2011/115/meirmanov.pdf | MR
[5] Meirmanov A., Shmarev S., “A compactness lemma of Aubin type and its application to a class of degenerate parabolic equations”, Electron. J. Diff. Equ., 2014 (2014), 1–13 https://ejde.math.txstate.edu/Volumes/2014/227/meirmanov.pdf | DOI | MR
[6] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and Quasi-linear Equations of Parabolic Type, Providence, Rhode Island, 1968, 667 pp. | MR | Zbl
[7] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl
[8] Jikov V. V., Kozlov S. M., Oleinik O. A., Homogenization of differential operators and integral functionals, Springer-Verlag, 1994, 570 pp. | MR | Zbl
[9] Acerbi E., Chiad`o V., Maso G., Percivale D., “An extension theorem from connected sets and homogenization in general periodic domains”, Nonlinear Anal., 5 (1992), 481–496 | DOI | MR | Zbl
[10] Meirmanov A., Mathematical models for poroelastic flow, Atlantis Press, Paris, 2014, 449 pp. | MR
[11] Rudin W., Principles of mathematical analysis, McGraw-Hill, 1976, 351 pp. | MR | Zbl
[12] Kolmogorov A. N., Fomin S. V., Introductory real analysis, Dover Publications, New York, 1975, 416 pp. | MR
[13] Adams R. A., Sobolev spaces, Academic Press, New York, 1975, 320 pp. | MR | Zbl
[14] Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaire, Dunon, Gauthier-Villar, Paris, 1969, 554 pp. | MR
[15] Mikhailov V. P., Gushchin A. K., “Additional chapters of the course “Equations of Mathematical Physics””, Lecture courses REC, 7, V.A. Steklov's Mathematical Institute, RAS, M., 2007, 146 pp. | Zbl
[16] Bensoussan A., Lions J., Papanicolau G., Asymptotic Analysis for Periodic Structure, North Holland, Amsterdam, 1978, 699 pp. | MR