Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_3_a9, author = {P. Danchev}, title = {Representing matrices over fields as square-zero matrices and diagonal matrices}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {84--88}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a9/} }
P. Danchev. Representing matrices over fields as square-zero matrices and diagonal matrices. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a9/
[1] A.N. Abyzov, “Strongly $q$-nil-clean rings”, Siber. Math. J., 2019, no. 2, 197–208 | DOI | MR | Zbl
[2] A.N. Abyzov, I. I. Mukhametgaliev, “On some matrix analogs of the little Fermat theorem”, Math. Notes, 101:1–2 (2017), 187–192 | DOI | MR | Zbl
[3] S. Breaz, “Matrices over finite fields as sums of periodic and nilpotent elements”, Lin. Alg. Appl., 555 (2018), 92–97 | DOI | MR | Zbl
[4] S. Breaz, G. Cǎlugǎreanu, P. Danchev, T. Micu, “Nil-clean matrix rings”, Lin. Alg. Appl., 439 (2013), 3115–3119 | DOI | MR | Zbl
[5] P.V. Danchev, “A generalization of $\pi$-regular rings”, Turk. J. Math., 43 (2019), 702–711 | DOI | MR | Zbl
[6] P.V. Danchev, “On a property of nilpotent matrices over an algebrwaaically closed field”, Chebyshevskii Sbornik, 20:3 (2019), 400–403 | DOI | MR
[7] P.V. Danchev, “Certain properties of square matrices over fields with applications to rings”, Rev. Colomb. Mat., 54:2 (2020), 109–116 | DOI | MR | Zbl
[8] P. Danchev, E. García, M. G. Lozano, “Decompositions of matrices into diagonalizable and square-zero matrices”, Lin. Multilin. Alg., 69 (2021) | MR
[9] E. García, M.G. Lozano, R.M. Alcázar, G. Vera de Salas, “A Jordan canonical form for nilpotent elements in an arbitrary ring”, Lin. Alg. Appl., 581 (2019), 324–335 | DOI | MR | Zbl
[10] D.A. Jaume, R. Sota, “On the core-nilpotent decomposition of trees”, Lin. Alg. Appl., 563 (2019), 207–214 | DOI | MR | Zbl
[11] K.C. O'Meara, Nilpotents often the difference of two idempotents, unpublished draft privately circulated on March, 2018
[12] Y. Shitov, “The ring $\mathbb{M}_{8k+4}(\mathbb{Z}_2)$ is nil-clean of index four”, Indag. Math., 30 (2019), 1077–1078 | DOI | MR | Zbl
[13] J. Šter, “On expressing matrices over $\mathbb{Z}_2$ as the sum of an idempotent and a nilpotent”, Lin. Alg. Appl., 544 (2018), 339–349 | DOI | MR