Representing matrices over fields as square-zero matrices and diagonal matrices
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any square matrix over an arbitrary infinite field is a sum of a square-zero matrix and a diagonalizable matrix. This result somewhat contrasts recent theorem due to Breaz, published in Linear Algebra Appl. (2018).
Keywords: matrices, rational form, diagonal form, nilpotents.
@article{CHEB_2020_21_3_a9,
     author = {P. Danchev},
     title = {Representing matrices over fields as square-zero matrices and diagonal matrices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {84--88},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a9/}
}
TY  - JOUR
AU  - P. Danchev
TI  - Representing matrices over fields as square-zero matrices and diagonal matrices
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 84
EP  - 88
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a9/
LA  - en
ID  - CHEB_2020_21_3_a9
ER  - 
%0 Journal Article
%A P. Danchev
%T Representing matrices over fields as square-zero matrices and diagonal matrices
%J Čebyševskij sbornik
%D 2020
%P 84-88
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a9/
%G en
%F CHEB_2020_21_3_a9
P. Danchev. Representing matrices over fields as square-zero matrices and diagonal matrices. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 84-88. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a9/

[1] A.N. Abyzov, “Strongly $q$-nil-clean rings”, Siber. Math. J., 2019, no. 2, 197–208 | DOI | MR | Zbl

[2] A.N. Abyzov, I. I. Mukhametgaliev, “On some matrix analogs of the little Fermat theorem”, Math. Notes, 101:1–2 (2017), 187–192 | DOI | MR | Zbl

[3] S. Breaz, “Matrices over finite fields as sums of periodic and nilpotent elements”, Lin. Alg. Appl., 555 (2018), 92–97 | DOI | MR | Zbl

[4] S. Breaz, G. Cǎlugǎreanu, P. Danchev, T. Micu, “Nil-clean matrix rings”, Lin. Alg. Appl., 439 (2013), 3115–3119 | DOI | MR | Zbl

[5] P.V. Danchev, “A generalization of $\pi$-regular rings”, Turk. J. Math., 43 (2019), 702–711 | DOI | MR | Zbl

[6] P.V. Danchev, “On a property of nilpotent matrices over an algebrwaaically closed field”, Chebyshevskii Sbornik, 20:3 (2019), 400–403 | DOI | MR

[7] P.V. Danchev, “Certain properties of square matrices over fields with applications to rings”, Rev. Colomb. Mat., 54:2 (2020), 109–116 | DOI | MR | Zbl

[8] P. Danchev, E. García, M. G. Lozano, “Decompositions of matrices into diagonalizable and square-zero matrices”, Lin. Multilin. Alg., 69 (2021) | MR

[9] E. García, M.G. Lozano, R.M. Alcázar, G. Vera de Salas, “A Jordan canonical form for nilpotent elements in an arbitrary ring”, Lin. Alg. Appl., 581 (2019), 324–335 | DOI | MR | Zbl

[10] D.A. Jaume, R. Sota, “On the core-nilpotent decomposition of trees”, Lin. Alg. Appl., 563 (2019), 207–214 | DOI | MR | Zbl

[11] K.C. O'Meara, Nilpotents often the difference of two idempotents, unpublished draft privately circulated on March, 2018

[12] Y. Shitov, “The ring $\mathbb{M}_{8k+4}(\mathbb{Z}_2)$ is nil-clean of index four”, Indag. Math., 30 (2019), 1077–1078 | DOI | MR | Zbl

[13] J. Šter, “On expressing matrices over $\mathbb{Z}_2$ as the sum of an idempotent and a nilpotent”, Lin. Alg. Appl., 544 (2018), 339–349 | DOI | MR