Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_3_a8, author = {N. M. Glazunov}, title = {On {Langlands} program, global fields and shtukas}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {68--83}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a8/} }
N. M. Glazunov. On Langlands program, global fields and shtukas. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 68-83. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a8/
[1] R. P. Langlands, “On the notion of an automorphic representation”, Automorphic Forms, Representations, and L-Functions, v. I, Proc. Symp. Pure Math., 33, AMS, Providence, 1979, 203–207 | DOI | MR
[2] R. P. Langlands, “Base change for GL(2)”, Annals of Math. Studies, 96, Princeton Univ. Press, Princeton, 1980 | MR | Zbl
[3] H. Jacquet, R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics, 114, Springer-Verlag, Berlin, 1970 | DOI | MR | Zbl
[4] I.R. Shafarevich, “Abelian and nonabelian mathematics”, Sochineniya (Works), part 1, v. 3, Prima-B, M., 1996, 397–415 (in Russian) | MR
[5] A.N. Parshin, “Questions and remarks to the Langlands program”, Uspekhi Matem. Nauk, 67:3 (2012), 115–146 | DOI | MR | Zbl
[6] V. Drinfeld, “Langlands' conjecture for GL(2) over functional fields”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 565–574 | MR
[7] L. Lafforgue, “Chtoucas de Drinfeld, formule des traces d'Arthur-Selberg et correspondance de Langlands”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. I, Higher Ed. Press, Beijing, 2002, 383–400 | MR | Zbl
[8] I.R. Shafarevich, “On embedding problem for fields”, Math. USSR-Izv., 18 (1954), 918–924 | MR
[9] A.V. Yakovlev, “The embedding problem for number fields”, Math. USSR-Izv., 31:2 (1967), 211–224 | MR
[10] A.V. Yakovlev, “Galois group of the algebraic closure of local fields”, Math. USSR-Izv., 32:6 (1968), 1283–1322 | MR | Zbl
[11] S.V. Vostokov, “Canonical Hensel-Shafarevich basis in complete discrete valuation fields”, Zap. Nauchn. Semin. POMI, 394, 2011, 174–193 | MR
[12] S.V. Vostokov, “Explicit construction of class field theory for a multidimensional local field”, Math. USSR-Izv., 49:2 (1985), 283–308 | MR
[13] S.V. Vostokov, I.L. Klimovitskii, “Primery elements in formal modules”, Mathematics and Informatics, v. 2, Steklov Math. Inst., RAS, M., 2013, 153–163 | MR | Zbl
[14] B. B. Lur'e, “On embedding problem with kernel without center”, Math. USSR-Izv., 28 (1964), 1135–1138 | MR
[15] B. B. Lur'e, “Universally solvable embedding problems”, Proc. Steklov Inst. Math., 183 (1991), 141–147 | MR
[16] E.V. Ikonnikova, E.V. Shaverdova, “The Shafarevich basis in higher-dimensional local field”, Zap. Nauchn. Semin. POMI, 413, 2013, 115–133 | MR
[17] E.V. Ikonnikova, “The Hensel-Shafarevich canonical basis in Lubin-Tate formal modules”, J. Math. Sci., New York, 219:3 (2016), 462–472 | DOI | MR | Zbl
[18] J.-P. Serre, Abelian $l$-Adic Representations and Elliptic Curves, Addison-Wesley Publishing Company, NY, 1989 | MR
[19] V. Drinfeld, “Moduli varieties of $F$-sheaves”, Func. Anal. and Applications, 21, 1987, 107–122 | DOI | MR | Zbl
[20] M. Harris, R. Taylor, The geometry and cohomology of some simple Shimura varieties, Ann. Math. Stud., 151, Princeton University Press, Princeton, 2001 | MR | Zbl
[21] A. Wiles, “Modular elliptic curves and Fermat's last theorem”, Ann. of Math. (2), 141:3 (1995), 443–551 | DOI | MR | Zbl
[22] R. Taylor, A. Wiles, “Ring-theoretic properties of certain Hecke algebras”, Ann. of Math. (2), 141:3 (1995), 553–572 | DOI | MR | Zbl
[23] G. Anderson, “t-Motives”, Duke math. J., 53 (1986), 457–502 | DOI | MR | Zbl
[24] C. Breuil, B. Conrad, F. Diamond, R. Taylor, “On the modularity of elliptic curves over Q: wild 3-adic exercises”, J. Amer. Math. Soc., 14:4 (2001), 843–939 | DOI | MR | Zbl
[25] L. Clozel, M. Harris, R. Taylor, “Automorphy for some l-adic lifts of automorphic mod l Galois representations”, Pub. Math. I.H.E.S., 108, 2008, 1–181 | DOI | MR | Zbl
[26] M. Harris, N. Shepherd-Barron, R. Taylor, “A family of Calabi-Yau varieties and potential automorphy”, Ann. of Math. (2), 171:2 (2010), 779–813 | DOI | MR | Zbl
[27] Arthur J., “The principle of functoriality”, Bulletin of the Amer. Math. Soc., 40:1 (2003), 39–53 | DOI | MR | Zbl
[28] A. Borel, “Automorphic $L$-functios”, Proc. Symp. Pure Math., 33, no. 2, 1979, 27–61 | DOI | MR | Zbl
[29] Tate J., “Number theoretic background”, Proc. Symp. Pure Math., 33, no. 2, 1979, 3–26 | DOI | MR | Zbl
[30] V. Drinfeld, “Elliptic modules”, Mat. Sbornik, 94:4 (1974), 594–627 | MR
[31] P. Deligne, D. Husemoller, “Survey of Drinfeld's modules”, Contemporary Math., 67, 1987, 25–91 | DOI | MR | Zbl
[32] J. Lubin, “One-parameter formal Lie groups over $p$-adic integer rings”, Ann. of Math., 80, 1964, 464–484 | DOI | MR | Zbl
[33] Urs Hartl, “Number Fields and Function fields - Two Parallel Worlds”, Papers from the 4th Conference held on Texel Island, April 2004, Progress in Math., 239, Birkhauser-Verlag, Basel, 2005, 167–222 | MR | Zbl
[34] Urs Hartl, Arasteh Rad, “Local $\mathbb P$-shtukas and their relation to global ${G}$-shtukas”, Münster J. Math., 7:2 (2014), 623–670 | MR | Zbl
[35] Urs Hartl, E. Viehmann, J. reine angew. Math. (Crelle), 656 (2011), 87–129 | MR | Zbl
[36] R. Singh, Local shtukas and divisible local Anderson-modules, Diss., Univ. Münster, Fachbereich Mathematik und Informatik, 2012, 72 pp.
[37] Urs Hartl, R. Singh, “Local Shtukas and Divisible Local Anderson Modules,”, Canadian J. of Math., 71:5 (2019), 1163–1207 | DOI | MR | Zbl
[38] Arasteh Rad, Uniformizing the moduli stacks of global $\mathfrak G$-shtukas, Diss., Univ. Münster, Fachbereich Mathematik und Informatik, 2012, 85 pp. | Zbl
[39] A. Weiß, Foliations in moduli spaces of bounded global $G$-shtukas, Diss., Univ. Münster, Fachbereich Mathematik und Informatik, 2017, 97 pp.
[40] A. Grothendieck, Catègories fibrèes et descente, Exposè VI in Revètements ètales et groupe fondemental (SGA 1), Troisième èdition, corrigè, Institut des Hautes Études Scientifiques, Paris, 1963 | MR
[41] S. Lichtenbaum, M. Schlessinger, “The cotangent complex of morphisms”, Transactions of the American Math. Society, 128 (1967), 41–70 | DOI | MR | Zbl
[42] W. Messing, The Cristals Associated to Barsotti-Tate Groups, LNM, 264, Springer-Verlag, Berlin etc., 1973 | MR
[43] V. Abrashkin, Compositio Mathematika, 142:4 (2006), 867–888 | DOI | MR | Zbl
[44] L. Illusie, Complex cotangent et deformations, v. I, LNM, 239, Springer Verlag, Berlin-NY, 1971 ; v. II, 283, 1972 | MR | Zbl | Zbl
[45] G. Faltings, “Group schemes with strict ${\mathcal O}$-action”, Mosc. Math. J., 2:2 (2002), 249–279 | DOI | MR | Zbl
[46] N. Glazunov, “Quadratic forms, algebraic groups and number theory”, Chebyshevskii Sbornik, 16:4 (2015), 77–89 | MR | Zbl
[47] N. Glazunov, “Extremal forms and rigidity in arithmetic geometry and in dynamics”, Chebyshevskii Sbornik, 16:3 (2015), 124–146 | MR | Zbl
[48] N. Glazunov, “Duality in abelian varieties and formal groups over local fields. I”, Chebyshevskii Sbornik, 19:1 (2018), 44–56 | DOI | MR | Zbl