On Langlands program, global fields and shtukas
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 68-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this paper is to survey some of the important results on Langlands program, global fields, $D$-shtukas and finite shtukas which have influenced the development of algebra and number theory. It is intended to be selective rather than exhaustive, as befits the occasion of the 80-th birthday of Yakovlev, 75-th birthday of Vostokov and 75-th birthday of Lurie. Under assumptions on ground fields results on Langlands program have been proved and discussed by Langlands, Jacquet, Shafarevich, Parshin, Drinfeld, Lafforgue and others. This communication is an introduction to the Langlands Program, global fields and to $D$-shtukas and finite shtukas (over algebraic curves) over function fields. At first recall that linear algebraic groups found important applications in the Langlands program. Namely, for a connected reductive group $ G $ over a global field $ K $, the Langlands correspondence relates automorphic forms on $ G $ and global Langlands parameters, i.e. conjugacy classes of homomorphisms from the Galois group $ {\mathcal Gal} ({\overline K} / K) $ to the dual Langlands group $ \hat G ({\overline {\mathbb Q}} _ p) $. In the case of fields of algebraic numbers, the application and development of elements of the Langlands program made it possible to strengthen the Wiles theorem on the Shimura-Taniyama-Weil hypothesis and to prove the Sato-Tate hypothesis. V. Drinfeld and L. Lafforgue have investigated the case of functional global fields of characteristic $ p> 0 $ ( V. Drinfeld for $ G = GL_2 $ and L. Lafforgue for $ G = GL_r, r $ is an arbitrary positive integer). They have proved in these cases the Langlands correspondence. Under the process of these investigations, V. Drinfeld introduced the concept of a $ F $-bundle, or shtuka, which was used by both authors in the proof for functional global fields of characteristic $ p> 0 $ of the studied cases of the existence of the Langlands correspondence. Along with the use of shtukas developed and used by V. Drinfeld and L. Lafforge, other constructions related to approaches to the Langlands program in the functional case were introduced. G. Anderson has introduced the concept of a $ t $-motive. U. Hartl, his colleagues and students have introduced and have explored the concepts of finite, local and global $ G $-shtukas. In this review article, we first present results on Langlands program and related representation over algebraic number fields. Then we briefly present approaches by U. Hartl, his colleagues and students to the study of $ D $-shtukas and finite shtukas. These approaches and our discussion relate to the Langlands program as well as to the internal development of the theory of $ G $-shtukas.
Keywords: Langlands correspondence, global field, Drinfeld module, shtuka, finite shtuka, local Anderson-module, cotangent complex, formal group.
@article{CHEB_2020_21_3_a8,
     author = {N. M. Glazunov},
     title = {On {Langlands} program, global fields and shtukas},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {68--83},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a8/}
}
TY  - JOUR
AU  - N. M. Glazunov
TI  - On Langlands program, global fields and shtukas
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 68
EP  - 83
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a8/
LA  - en
ID  - CHEB_2020_21_3_a8
ER  - 
%0 Journal Article
%A N. M. Glazunov
%T On Langlands program, global fields and shtukas
%J Čebyševskij sbornik
%D 2020
%P 68-83
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a8/
%G en
%F CHEB_2020_21_3_a8
N. M. Glazunov. On Langlands program, global fields and shtukas. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 68-83. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a8/

[1] R. P. Langlands, “On the notion of an automorphic representation”, Automorphic Forms, Representations, and L-Functions, v. I, Proc. Symp. Pure Math., 33, AMS, Providence, 1979, 203–207 | DOI | MR

[2] R. P. Langlands, “Base change for GL(2)”, Annals of Math. Studies, 96, Princeton Univ. Press, Princeton, 1980 | MR | Zbl

[3] H. Jacquet, R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics, 114, Springer-Verlag, Berlin, 1970 | DOI | MR | Zbl

[4] I.R. Shafarevich, “Abelian and nonabelian mathematics”, Sochineniya (Works), part 1, v. 3, Prima-B, M., 1996, 397–415 (in Russian) | MR

[5] A.N. Parshin, “Questions and remarks to the Langlands program”, Uspekhi Matem. Nauk, 67:3 (2012), 115–146 | DOI | MR | Zbl

[6] V. Drinfeld, “Langlands' conjecture for GL(2) over functional fields”, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, 565–574 | MR

[7] L. Lafforgue, “Chtoucas de Drinfeld, formule des traces d'Arthur-Selberg et correspondance de Langlands”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. I, Higher Ed. Press, Beijing, 2002, 383–400 | MR | Zbl

[8] I.R. Shafarevich, “On embedding problem for fields”, Math. USSR-Izv., 18 (1954), 918–924 | MR

[9] A.V. Yakovlev, “The embedding problem for number fields”, Math. USSR-Izv., 31:2 (1967), 211–224 | MR

[10] A.V. Yakovlev, “Galois group of the algebraic closure of local fields”, Math. USSR-Izv., 32:6 (1968), 1283–1322 | MR | Zbl

[11] S.V. Vostokov, “Canonical Hensel-Shafarevich basis in complete discrete valuation fields”, Zap. Nauchn. Semin. POMI, 394, 2011, 174–193 | MR

[12] S.V. Vostokov, “Explicit construction of class field theory for a multidimensional local field”, Math. USSR-Izv., 49:2 (1985), 283–308 | MR

[13] S.V. Vostokov, I.L. Klimovitskii, “Primery elements in formal modules”, Mathematics and Informatics, v. 2, Steklov Math. Inst., RAS, M., 2013, 153–163 | MR | Zbl

[14] B. B. Lur'e, “On embedding problem with kernel without center”, Math. USSR-Izv., 28 (1964), 1135–1138 | MR

[15] B. B. Lur'e, “Universally solvable embedding problems”, Proc. Steklov Inst. Math., 183 (1991), 141–147 | MR

[16] E.V. Ikonnikova, E.V. Shaverdova, “The Shafarevich basis in higher-dimensional local field”, Zap. Nauchn. Semin. POMI, 413, 2013, 115–133 | MR

[17] E.V. Ikonnikova, “The Hensel-Shafarevich canonical basis in Lubin-Tate formal modules”, J. Math. Sci., New York, 219:3 (2016), 462–472 | DOI | MR | Zbl

[18] J.-P. Serre, Abelian $l$-Adic Representations and Elliptic Curves, Addison-Wesley Publishing Company, NY, 1989 | MR

[19] V. Drinfeld, “Moduli varieties of $F$-sheaves”, Func. Anal. and Applications, 21, 1987, 107–122 | DOI | MR | Zbl

[20] M. Harris, R. Taylor, The geometry and cohomology of some simple Shimura varieties, Ann. Math. Stud., 151, Princeton University Press, Princeton, 2001 | MR | Zbl

[21] A. Wiles, “Modular elliptic curves and Fermat's last theorem”, Ann. of Math. (2), 141:3 (1995), 443–551 | DOI | MR | Zbl

[22] R. Taylor, A. Wiles, “Ring-theoretic properties of certain Hecke algebras”, Ann. of Math. (2), 141:3 (1995), 553–572 | DOI | MR | Zbl

[23] G. Anderson, “t-Motives”, Duke math. J., 53 (1986), 457–502 | DOI | MR | Zbl

[24] C. Breuil, B. Conrad, F. Diamond, R. Taylor, “On the modularity of elliptic curves over Q: wild 3-adic exercises”, J. Amer. Math. Soc., 14:4 (2001), 843–939 | DOI | MR | Zbl

[25] L. Clozel, M. Harris, R. Taylor, “Automorphy for some l-adic lifts of automorphic mod l Galois representations”, Pub. Math. I.H.E.S., 108, 2008, 1–181 | DOI | MR | Zbl

[26] M. Harris, N. Shepherd-Barron, R. Taylor, “A family of Calabi-Yau varieties and potential automorphy”, Ann. of Math. (2), 171:2 (2010), 779–813 | DOI | MR | Zbl

[27] Arthur J., “The principle of functoriality”, Bulletin of the Amer. Math. Soc., 40:1 (2003), 39–53 | DOI | MR | Zbl

[28] A. Borel, “Automorphic $L$-functios”, Proc. Symp. Pure Math., 33, no. 2, 1979, 27–61 | DOI | MR | Zbl

[29] Tate J., “Number theoretic background”, Proc. Symp. Pure Math., 33, no. 2, 1979, 3–26 | DOI | MR | Zbl

[30] V. Drinfeld, “Elliptic modules”, Mat. Sbornik, 94:4 (1974), 594–627 | MR

[31] P. Deligne, D. Husemoller, “Survey of Drinfeld's modules”, Contemporary Math., 67, 1987, 25–91 | DOI | MR | Zbl

[32] J. Lubin, “One-parameter formal Lie groups over $p$-adic integer rings”, Ann. of Math., 80, 1964, 464–484 | DOI | MR | Zbl

[33] Urs Hartl, “Number Fields and Function fields - Two Parallel Worlds”, Papers from the 4th Conference held on Texel Island, April 2004, Progress in Math., 239, Birkhauser-Verlag, Basel, 2005, 167–222 | MR | Zbl

[34] Urs Hartl, Arasteh Rad, “Local $\mathbb P$-shtukas and their relation to global ${G}$-shtukas”, Münster J. Math., 7:2 (2014), 623–670 | MR | Zbl

[35] Urs Hartl, E. Viehmann, J. reine angew. Math. (Crelle), 656 (2011), 87–129 | MR | Zbl

[36] R. Singh, Local shtukas and divisible local Anderson-modules, Diss., Univ. Münster, Fachbereich Mathematik und Informatik, 2012, 72 pp.

[37] Urs Hartl, R. Singh, “Local Shtukas and Divisible Local Anderson Modules,”, Canadian J. of Math., 71:5 (2019), 1163–1207 | DOI | MR | Zbl

[38] Arasteh Rad, Uniformizing the moduli stacks of global $\mathfrak G$-shtukas, Diss., Univ. Münster, Fachbereich Mathematik und Informatik, 2012, 85 pp. | Zbl

[39] A. Weiß, Foliations in moduli spaces of bounded global $G$-shtukas, Diss., Univ. Münster, Fachbereich Mathematik und Informatik, 2017, 97 pp.

[40] A. Grothendieck, Catègories fibrèes et descente, Exposè VI in Revètements ètales et groupe fondemental (SGA 1), Troisième èdition, corrigè, Institut des Hautes Études Scientifiques, Paris, 1963 | MR

[41] S. Lichtenbaum, M. Schlessinger, “The cotangent complex of morphisms”, Transactions of the American Math. Society, 128 (1967), 41–70 | DOI | MR | Zbl

[42] W. Messing, The Cristals Associated to Barsotti-Tate Groups, LNM, 264, Springer-Verlag, Berlin etc., 1973 | MR

[43] V. Abrashkin, Compositio Mathematika, 142:4 (2006), 867–888 | DOI | MR | Zbl

[44] L. Illusie, Complex cotangent et deformations, v. I, LNM, 239, Springer Verlag, Berlin-NY, 1971 ; v. II, 283, 1972 | MR | Zbl | Zbl

[45] G. Faltings, “Group schemes with strict ${\mathcal O}$-action”, Mosc. Math. J., 2:2 (2002), 249–279 | DOI | MR | Zbl

[46] N. Glazunov, “Quadratic forms, algebraic groups and number theory”, Chebyshevskii Sbornik, 16:4 (2015), 77–89 | MR | Zbl

[47] N. Glazunov, “Extremal forms and rigidity in arithmetic geometry and in dynamics”, Chebyshevskii Sbornik, 16:3 (2015), 124–146 | MR | Zbl

[48] N. Glazunov, “Duality in abelian varieties and formal groups over local fields. I”, Chebyshevskii Sbornik, 19:1 (2018), 44–56 | DOI | MR | Zbl