Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_3_a6, author = {S. V. Vostokov and T. Yu. Shashkov and S. S. Afanas'eva}, title = {Schnirelmann's integral and analogy of {Cauchy} integral theorem for two-dimensional local fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {39--58}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a6/} }
TY - JOUR AU - S. V. Vostokov AU - T. Yu. Shashkov AU - S. S. Afanas'eva TI - Schnirelmann's integral and analogy of Cauchy integral theorem for two-dimensional local fields JO - Čebyševskij sbornik PY - 2020 SP - 39 EP - 58 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a6/ LA - ru ID - CHEB_2020_21_3_a6 ER -
%0 Journal Article %A S. V. Vostokov %A T. Yu. Shashkov %A S. S. Afanas'eva %T Schnirelmann's integral and analogy of Cauchy integral theorem for two-dimensional local fields %J Čebyševskij sbornik %D 2020 %P 39-58 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a6/ %G ru %F CHEB_2020_21_3_a6
S. V. Vostokov; T. Yu. Shashkov; S. S. Afanas'eva. Schnirelmann's integral and analogy of Cauchy integral theorem for two-dimensional local fields. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 39-58. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a6/
[1] Zhukov I., Invitation to higher local fields, section 1, v. I, Geometry $\$ Topology Monographs, 3, 5–18 | MR
[2] Hasse N., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, B. G. Teubner, Leipzig, 1930 | MR | Zbl
[3] Kato K., “A generalition of local class field theory by using K-groups. 1”, J. Fac. Sci. Univ. Tokio, Sect. 1 Math., 26:2 (1979), 303–376 | MR | Zbl
[4] Kato K., “A generalization of local class field theory by using K-groups. II”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27:3 (1980), 603–683 | MR | Zbl
[5] Vostokov S. V., “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1288–1321 | MR | Zbl
[6] Vostokov S. V., “Yavnaya konstruktsiya teorii polei klassov mnogomernogo lokalnogo polya”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 283–308 | MR
[7] Vostokov S. V., Zhukov I. B., Fesenko I. B., “K teorii mnogomernykh lokalnykh polei. Metody i konstruktsii”, Algebra i analiz, 2:4 (1990), 91–118 | Zbl
[8] Vostokov S. V., Ivanov M. A., “Integralnaya teorema Koshi i klassicheskii zakon vzaimnosti”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 2, 2012, 73–82 | MR
[9] Ivanov M. A., “Proizvedenie simvolov $p^{n}$-kh stepennykh vychetov kak abelev integral”, Algebra i analiz, 24:2 (2012), 120–129 | MR
[10] Lomadze V. G., “K teorii vetvleniya dvumernykh lokalnykh polei”, Matem. sb., 109(151):3(7) (1979), 378–394 | MR | Zbl
[11] Milnor Dzh., Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974, 196 pp.
[12] Parshin A. N., “Polya klassov i algebraicheskaya $K$-teoriya”, Uspekhi matem. nauk, 30:1 (1975), 253–254 | MR | Zbl
[13] Parshin A. N., “Lokalnaya teoriya polei klassov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 165, 1984, 143–170 | MR | Zbl
[14] Fesenko I. B., “Teoriya lokalnykh polei. Lokalnaya teoriya polei klassov. Mnogomernaya lokalnaya teoriya polei klassov”, Algebra i analiz, 4:3 (1992), 1–41
[15] Shafarevich I. R., “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | Zbl