The hearts of weight structures are the weakly idempotent complete categories
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 29-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proves that additive categories that occur as hearts of weight structures are precisely the weakly idempotent complete categories, that is, the categories where all split monomorphisms give direct sum decompositions. The work also gives several other conditions equivalent to weak idempotent completeness (some of them are completely new) and discusses weak idempotent completions of additive categories.
Keywords: weakly idempotent complete category, idempotent completion, weak retraction-closure, triangulated category, weight structure, heart.
@article{CHEB_2020_21_3_a5,
     author = {M. V. Bondarko and S. V. Vostokov},
     title = {The hearts of weight structures are the weakly idempotent complete categories},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {29--38},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a5/}
}
TY  - JOUR
AU  - M. V. Bondarko
AU  - S. V. Vostokov
TI  - The hearts of weight structures are the weakly idempotent complete categories
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 29
EP  - 38
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a5/
LA  - en
ID  - CHEB_2020_21_3_a5
ER  - 
%0 Journal Article
%A M. V. Bondarko
%A S. V. Vostokov
%T The hearts of weight structures are the weakly idempotent complete categories
%J Čebyševskij sbornik
%D 2020
%P 29-38
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a5/
%G en
%F CHEB_2020_21_3_a5
M. V. Bondarko; S. V. Vostokov. The hearts of weight structures are the weakly idempotent complete categories. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 29-38. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a5/

[1] Balmer P., Schlichting M., “Idempotent completion of triangulated categories”, Journal of Algebra, 236:2 (2001), 819–834 | DOI | MR | Zbl

[2] Beilinson A., Bernstein J., Deligne P., “Faisceaux pervers”, Asterisque, 100 (1982), 5–171 | MR

[3] Bondarko M. V., “Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)”, J. of K-theory, 6:3 (2010), 387–504, arXiv: 0704.4003 | DOI | MR | Zbl

[4] Bondarko M. V., On weight complexes, pure functors, and detecting weights, 2018, arXiv: 1812.11952 | MR

[5] Bondarko M. V., Sosnilo V. A., “On constructing weight structures and extending them to idempotent extensions”, Homology, Homotopy and Appl., 20:1 (2018), 37–57 | DOI | MR | Zbl

[6] Bühler T., “Exact categories”, Expo. Math., 28 (2010), 1–69 | DOI | MR | Zbl

[7] Freyd P., “Splitting homotopy idempotents”, Proceedings of the Conference on Categorical Algebra (La Jolla, CA, 1965), Springer, New York, 1966, 173–176 | DOI | MR

[8] Pauksztello D., “Compact cochain objects in triangulated categories and co-t-structures”, Central European Journal of Mathematics, 6:1 (2008), 25–42 | DOI | MR | Zbl

[9] Neeman A., “The derived category of an exact category”, J. Algebra, 135:2 (1990), 388–394 | DOI | MR | Zbl

[10] Rose D., “A note on the Grothendieck group of an additive category”, Vestn. Chelyab. Gos. Univ., 17:3 (2015), 135–139 | MR