On the trigonometric sum modulo subdivision of the real axis
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 18-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The estimate of the trigonometric sum of the kind $$ S=\sum_{a\leq b}e^{2\pi if(t_s)}, $$ where $a\geq 0,a\leq b$ are real numbers, $t_s$ is increasing to infinity of non-negative numbers, $f(t)$ is a smooth real function, is found. Here also there are proved the analogues of Euler's, Sonin's, Poisson's and van der Corput's formulas for considering sum. Let be given the sequence of $\Delta$ points $$ 0=t_0\dots\dots, \lim\limits_{n\to\infty}t_n=+\infty, $$ on the positive half-axis of the real line. For non-negative number $x$ we define the analogue of the integer part $[x]_{\Delta},$ meeting to the sequence $\Delta: [x]_{\Delta}=t_s,$ if $t_s\leq x$ The fractional part $\{x\}_{\Delta}$ is defined by the equality $$ \{x\}_{\Delta}=\frac{x-t_s}{t_{s+1}-t_s}, $$ if $t_s\leq x$ moreover $0\leq\{x\}_{\Delta}1.$ We define the analogue of the Bernoulli function meeting to the sequence $\Delta: \rho_\Delta(x)=0,5-\{x\}_\Delta.$ Then is valid the following analogue of the van der Corput's theorem for subdivisions. Let $\Delta=\{t_s\}, 0=t_0$ be a subdivision of the half-axis $t\geq 0$ of the real line, $\delta_s=t_{s+1}-t_s\geq 1, \delta(a,b)=\max\limits_{a\leq x\leq b}{\rho'_{\Delta}(x)},$ and let be given the sequence $\Delta_0=\{\mu_s\}, \mu_s=0,5(t_s+t_{s+1}), s\geq 0,$ and points $a,b\in\Delta_0,$ let, also, $f'(x)$ be continuous, monotonic sign-constant in the interval $a x\leq b,$ moreover there exists the constant $\delta$ such that $02\delta\delta^{-1}(a,b)1$ and that for all $x$ from this interval is valid inequality $|f'(x)|\leq\delta.$ Then we have $$ \sum_{a\leq b}e^{2\pi if(t_s)}=\int\limits_{a}^{b}\rho'_\Delta(x)e^{2\pi if(x)} dx+10\theta\frac{\delta}{1-\delta\delta^{-1}(a,b)}, |\theta|\leq 1. $$
Keywords: subdivision of the real axis, the trigonometric sum modulo subdivision, Van der Corput's theorem on replacing a trigonometric sum modulo subdivision to an integral, the Euler's, Sonin's, Poisson's summation formulas on points of subdivision.
@article{CHEB_2020_21_3_a4,
     author = {A. A. Artemov and V. N. Chubarikov},
     title = {On the trigonometric sum modulo subdivision of the real axis},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {18--28},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a4/}
}
TY  - JOUR
AU  - A. A. Artemov
AU  - V. N. Chubarikov
TI  - On the trigonometric sum modulo subdivision of the real axis
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 18
EP  - 28
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a4/
LA  - ru
ID  - CHEB_2020_21_3_a4
ER  - 
%0 Journal Article
%A A. A. Artemov
%A V. N. Chubarikov
%T On the trigonometric sum modulo subdivision of the real axis
%J Čebyševskij sbornik
%D 2020
%P 18-28
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a4/
%G ru
%F CHEB_2020_21_3_a4
A. A. Artemov; V. N. Chubarikov. On the trigonometric sum modulo subdivision of the real axis. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 18-28. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a4/

[1] Vinogradov I. M., The method of trigonometric sums in the theory of numbers, 2nd Edition., correct. and supplement, Fizmatlit, M., 1980, 144 pp.

[2] Vinogradov I. M, The special version of the method of trigonometric sums, Fizmatlit, M., 1976, 120 pp.

[3] van der Corput J. G., “Zahlentheoretische Abschätzungen”, Math. Ann., 84 (1921), 53–79 | DOI | MR | Zbl

[4] van der Corput J. G., “Verschärfung der Abschätzung beim Teilerproblem”, Math. Ann., 87 (1922), 39–65 | DOI | MR | Zbl

[5] Karatsuba A. A, Foundations of the analytic number theory, 2-nd ed., Fizmatlit, M., 1983, 240 pp. | MR

[6] Titchmarsh E. C., The theory of the Riemann zeta-function, Oxford, 1951, 408 pp. | MR | Zbl

[7] Montgomery H. L., Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Providence, Rhode Island, 1994, 220 pp. | MR | Zbl

[8] Arkhipov G. I., Chubarikov V. N., “Three Theorems from Analysis on Trigonometric Sums”, Dokl. RAS, 335:4 (1994), 407 | MR | Zbl

[9] Arkhipov G. I., Selected Works, Publishing house of Oryol University, Orel, 2013, 464 pp.

[10] Arkhipov G. I., Sadovnichy V. A., Chubarikov V. C., Lectures on mathematical analysis, 4th ed., Rev., Drofa, M., 2004, 640 pp.

[11] Arkhipov G. I., Karatsuba A. A., Chubarikov V. C., Theory of multiple trigonometric sums, Science. Ch. ed.phys.-mat. lit., M., 1987, 368 pp. | MR

[12] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric sums in number theory and analysis, De Gruyter expositions in mathematics, 39, Walter de Gruyter, Berlin–New York, 2004, 554 pp. | MR | Zbl

[13] LeVeque W. J., “On uniform distribution modulo a subdivision”, Pacific J. Math., 1 (1953), 757–771 | DOI | MR

[14] Erdös P., Davenport H., “A theorem on uniform distribution”, Magyar Tud. Akad. Kutató Int. Kózl., 8:2 (1963), 3–11 | MR | Zbl

[15] Gallagher P. X., “A large sieve density estimate near $\sigma=1$”, Invent. Math., 1 (1974), 757–771 | MR

[16] Kuipers L., Niederreiter H., Uniform Distribution of Sequences, John Wiley Sons, N.Y.–London–Sydney–Toronto, 1974 | MR | Zbl