Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_3_a24, author = {V. A. Levin and K. M. Zingerman and K. Yu. Krapivin and M. Ya. Yakovlev}, title = {Legendre spectral element for plastic localization problems at large scale strains}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {306--316}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a24/} }
TY - JOUR AU - V. A. Levin AU - K. M. Zingerman AU - K. Yu. Krapivin AU - M. Ya. Yakovlev TI - Legendre spectral element for plastic localization problems at large scale strains JO - Čebyševskij sbornik PY - 2020 SP - 306 EP - 316 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a24/ LA - ru ID - CHEB_2020_21_3_a24 ER -
%0 Journal Article %A V. A. Levin %A K. M. Zingerman %A K. Yu. Krapivin %A M. Ya. Yakovlev %T Legendre spectral element for plastic localization problems at large scale strains %J Čebyševskij sbornik %D 2020 %P 306-316 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a24/ %G ru %F CHEB_2020_21_3_a24
V. A. Levin; K. M. Zingerman; K. Yu. Krapivin; M. Ya. Yakovlev. Legendre spectral element for plastic localization problems at large scale strains. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 306-316. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a24/
[1] Kachanov L. M., Foundations of the theory of plasticity, North-Holland, Amsterdam, 1971, 482 pp. | MR | Zbl
[2] Ishlinskii A. Yu., Ivlev D. D., Mathematical Theory of Plasticity, Fizmatlit, M., 2001, 704 pp. (in Russian)
[3] Sokolovsky W. W., Theory of Plasticity, 3rd ed, Nauka, M., 1969, 608 pp. (in Russian) | MR
[4] Rice J. R., “The Localization of Plastic Deformation”, Proceedings of the 14th International Congress on Theoretical and Applied Mechanics, v. 1, ed. W.T. Koiter, North Holland Publishing Co, 1976, 207–220 | MR
[5] Tvergaard V., Needleman A., Lo K. K., “Flow localization in the plane strain tensile test”, Journal of the Mechanics and Physics of Solids, 29:2 (1981), 115–142 | DOI | Zbl
[6] Needleman A., Rice J. R., “Limits to ductility set by plastic flow localization”, Mechanics of Sheet Metal Forming, 1978, 237–264 | DOI
[7] Hill R., Hutchinson J. W., “Bifurcation phenomena in the plane tension test”, J. Mech. Phys. Solids, 23 (1975), 239–264 | DOI | MR | Zbl
[8] Lee E. H., “Elastic-Plastic Deformation at Finite Strains”, Journal of Applied Mechanics, 36:1 (1969), 1–6 | DOI | Zbl
[9] Mandel J., “Contribution theorique a l'etude de l'ecrouissage et des lois de l'ecoulement plastique”, Proceedings of the 11th International Congress on Applied Mechanics, 1966, 502–509
[10] Simo J. C., Hughes T. J. R., Computational Inelasticity, v. 7, Springer Verlag, New York, 392 pp. | MR | Zbl
[11] Zienkiewicz O. C., Taylor R. L., Fox D. D., The finite element method for solid and structural mechanics, Seventh Edition, Elsevier, 2014 | MR | Zbl
[12] Lurie A. I., Nonlinear theory of elasticity, Nauka, M., 1980, 512 pp.
[13] Babuška I., Suri M., “The p- and h-p versions of the finite element method, an overview”, Computer Methods in Applied Mechanics and Engineering, 80:1–3 (1990), 5–26 | MR | Zbl
[14] Patera A. T., “A spectral element method for fluid dynamics: Laminar flow in a channel expansion”, Journal of Computational Physics, 54:3 (1984), 468–488 | DOI | Zbl
[15] Rønquist E.M., Patera A.T., “A Legendre spectral element method for the Stefan problem”, Int. J. Numer. Meth. Engng., 24 (1987), 2273–2299 | DOI | MR
[16] Shabozov M. S., “On an Optimal Quadrature Formula for Classes of Functions Given by Modulus of Continuity”, Modelirovanie i Analiz Informatsionnykh Sistem, 21:3 (2014), 91–105 (in Russian)
[17] Liu Z. L., Menouillard T., Belytschko T., “An XFEM/Spectral element method for dynamic crack propagation”, International Journal of Fracture, 169:2 (2011), 183–198 | DOI | Zbl
[18] Gharti H. N., Komatitsch D., Oye V., Martin R., Tromp J., “Application of an elastoplastic spectral-element method to 3D slope stability analysis”, Int. J. Numer. Meth. Engng., 91:1 (2012), 1–26 | DOI | MR | Zbl
[19] Gharti H. N., Oye V., Komatitsch D., Tromp J., “Simulation of multistage excavation based on a 3D spectral-element method”, Computers Structures, 100-101 (2012), 54–69 | DOI
[20] Peet Y. T., Fischer P. F., “Legendre spectral element method with nearly incompressible materials”, European Journal of Mechanics - A/Solids, 44 (2014), 91–103 | DOI | MR | Zbl
[21] Abramov S. M., Amel'kin S. A., Kljuev L. V., Krapivin K. J., Nozhnickij J. A., Servetnik A. N., Chichkovskij A. A., “Modeling the development of large plastic deformations in a rotating disk it the fidesys program”, Chebyshevskii Sbornik, 18:3 (2017), 15–27 (In Russ.) | Zbl