Legendre spectral element for plastic localization problems at large scale strains
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 306-316.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper the method of spectral elements based on the Legendre polynomial for time-independent elastic-plastic plane problems at large strains is proposed. The method of spectral elements is based on the variational principle (Galerkin's method). The solution of these problems has the phenomenon of localization of plastic deformations in narrow areas called slip-line or shear band. The possibility of using a spectral element for the numerical solution of these problems with discontinuous solutions is investigated. The yield condition of the material is the von Mises criterion. The stresses are integrated by the radial return method by backward implicit Euler scheme. The system of nonlinear algebraic equations is solved by the Newton's iterative method. A numerical solution is given of an example of stretching a strip weakened by cuts with a circular base in a plane stress and plane deformed state. Kinematic fields and limit load are obtained. Comparisons of numerical results with the analytical solution obtained for incompressible media constructed by the method of characteristics are presented.
Keywords: spectral method, localization phenomenon, plasticity, slip-line, finite strains, iterative Newton's method.
@article{CHEB_2020_21_3_a24,
     author = {V. A. Levin and K. M. Zingerman and K. Yu. Krapivin and M. Ya. Yakovlev},
     title = {Legendre spectral element for plastic localization problems at large scale strains},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {306--316},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a24/}
}
TY  - JOUR
AU  - V. A. Levin
AU  - K. M. Zingerman
AU  - K. Yu. Krapivin
AU  - M. Ya. Yakovlev
TI  - Legendre spectral element for plastic localization problems at large scale strains
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 306
EP  - 316
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a24/
LA  - ru
ID  - CHEB_2020_21_3_a24
ER  - 
%0 Journal Article
%A V. A. Levin
%A K. M. Zingerman
%A K. Yu. Krapivin
%A M. Ya. Yakovlev
%T Legendre spectral element for plastic localization problems at large scale strains
%J Čebyševskij sbornik
%D 2020
%P 306-316
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a24/
%G ru
%F CHEB_2020_21_3_a24
V. A. Levin; K. M. Zingerman; K. Yu. Krapivin; M. Ya. Yakovlev. Legendre spectral element for plastic localization problems at large scale strains. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 306-316. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a24/

[1] Kachanov L. M., Foundations of the theory of plasticity, North-Holland, Amsterdam, 1971, 482 pp. | MR | Zbl

[2] Ishlinskii A. Yu., Ivlev D. D., Mathematical Theory of Plasticity, Fizmatlit, M., 2001, 704 pp. (in Russian)

[3] Sokolovsky W. W., Theory of Plasticity, 3rd ed, Nauka, M., 1969, 608 pp. (in Russian) | MR

[4] Rice J. R., “The Localization of Plastic Deformation”, Proceedings of the 14th International Congress on Theoretical and Applied Mechanics, v. 1, ed. W.T. Koiter, North Holland Publishing Co, 1976, 207–220 | MR

[5] Tvergaard V., Needleman A., Lo K. K., “Flow localization in the plane strain tensile test”, Journal of the Mechanics and Physics of Solids, 29:2 (1981), 115–142 | DOI | Zbl

[6] Needleman A., Rice J. R., “Limits to ductility set by plastic flow localization”, Mechanics of Sheet Metal Forming, 1978, 237–264 | DOI

[7] Hill R., Hutchinson J. W., “Bifurcation phenomena in the plane tension test”, J. Mech. Phys. Solids, 23 (1975), 239–264 | DOI | MR | Zbl

[8] Lee E. H., “Elastic-Plastic Deformation at Finite Strains”, Journal of Applied Mechanics, 36:1 (1969), 1–6 | DOI | Zbl

[9] Mandel J., “Contribution theorique a l'etude de l'ecrouissage et des lois de l'ecoulement plastique”, Proceedings of the 11th International Congress on Applied Mechanics, 1966, 502–509

[10] Simo J. C., Hughes T. J. R., Computational Inelasticity, v. 7, Springer Verlag, New York, 392 pp. | MR | Zbl

[11] Zienkiewicz O. C., Taylor R. L., Fox D. D., The finite element method for solid and structural mechanics, Seventh Edition, Elsevier, 2014 | MR | Zbl

[12] Lurie A. I., Nonlinear theory of elasticity, Nauka, M., 1980, 512 pp.

[13] Babuška I., Suri M., “The p- and h-p versions of the finite element method, an overview”, Computer Methods in Applied Mechanics and Engineering, 80:1–3 (1990), 5–26 | MR | Zbl

[14] Patera A. T., “A spectral element method for fluid dynamics: Laminar flow in a channel expansion”, Journal of Computational Physics, 54:3 (1984), 468–488 | DOI | Zbl

[15] Rønquist E.M., Patera A.T., “A Legendre spectral element method for the Stefan problem”, Int. J. Numer. Meth. Engng., 24 (1987), 2273–2299 | DOI | MR

[16] Shabozov M. S., “On an Optimal Quadrature Formula for Classes of Functions Given by Modulus of Continuity”, Modelirovanie i Analiz Informatsionnykh Sistem, 21:3 (2014), 91–105 (in Russian)

[17] Liu Z. L., Menouillard T., Belytschko T., “An XFEM/Spectral element method for dynamic crack propagation”, International Journal of Fracture, 169:2 (2011), 183–198 | DOI | Zbl

[18] Gharti H. N., Komatitsch D., Oye V., Martin R., Tromp J., “Application of an elastoplastic spectral-element method to 3D slope stability analysis”, Int. J. Numer. Meth. Engng., 91:1 (2012), 1–26 | DOI | MR | Zbl

[19] Gharti H. N., Oye V., Komatitsch D., Tromp J., “Simulation of multistage excavation based on a 3D spectral-element method”, Computers Structures, 100-101 (2012), 54–69 | DOI

[20] Peet Y. T., Fischer P. F., “Legendre spectral element method with nearly incompressible materials”, European Journal of Mechanics - A/Solids, 44 (2014), 91–103 | DOI | MR | Zbl

[21] Abramov S. M., Amel'kin S. A., Kljuev L. V., Krapivin K. J., Nozhnickij J. A., Servetnik A. N., Chichkovskij A. A., “Modeling the development of large plastic deformations in a rotating disk it the fidesys program”, Chebyshevskii Sbornik, 18:3 (2017), 15–27 (In Russ.) | Zbl