Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_3_a23, author = {G. M. Zhuravlev and V. G. Telichko and N. S. Kurien and A. E. Gvozdev and O. V. Kuzovleva}, title = {The development of a mathematical complex for modeling the progress of destruction of composite structures based on hight-speed deformation models}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {292--305}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a23/} }
TY - JOUR AU - G. M. Zhuravlev AU - V. G. Telichko AU - N. S. Kurien AU - A. E. Gvozdev AU - O. V. Kuzovleva TI - The development of a mathematical complex for modeling the progress of destruction of composite structures based on hight-speed deformation models JO - Čebyševskij sbornik PY - 2020 SP - 292 EP - 305 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a23/ LA - ru ID - CHEB_2020_21_3_a23 ER -
%0 Journal Article %A G. M. Zhuravlev %A V. G. Telichko %A N. S. Kurien %A A. E. Gvozdev %A O. V. Kuzovleva %T The development of a mathematical complex for modeling the progress of destruction of composite structures based on hight-speed deformation models %J Čebyševskij sbornik %D 2020 %P 292-305 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a23/ %G ru %F CHEB_2020_21_3_a23
G. M. Zhuravlev; V. G. Telichko; N. S. Kurien; A. E. Gvozdev; O. V. Kuzovleva. The development of a mathematical complex for modeling the progress of destruction of composite structures based on hight-speed deformation models. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 292-305. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a23/
[1] Bazhenov Y. M., Concrete under dynamic loading, Stroizdat, M., 1970, 271 pp.
[2] Bate K., Wilson E., Numerical methods of analysis and the finite element method, Stroizdat, M., 1982, 448 pp.
[3] Birbraer A. N., Roleder A. Yu., Extreme impacts on structures, Publishing house of Polytech. un-ta, St. Petersburg, 2009, 594 pp.
[4] Gallagher R., Finite element method. Basics, Mir, M., 1984, 428 pp. | MR
[5] Kozlitin A. M., Popov A. I., Kozlitin P. A., Theoretical bases and practice of analysis of technogenic risks. Probabilistic methods for quantifying the dangers of the technosphere, SSTU, Saratov, 2002, 178 pp.
[6] Degtyarev D. V., Lisanov M. V., Sumskoy S. I., Shvyryaev A. A., “Quantitative risk analysis in justifying the explosion resistance of buildings and structures”, Labor Safety in industry, 2013, no. 6, 82–89
[7] Martynyuk V. F., Lectures on the theory of combustion and explosion, Russian state University of oil and gas. I. M. Gubkina, M., 2014, 184 pp.
[8] Zhuravlev G. M., Kurien N. S., “Mathematical modeling of the explosive effect of a non-contact charge on an isotropic concrete slab”, Theses of the 20th International scientific and technical conference «ACTUAL PROBLEMS of CONSTRUCTION, CONSTRUCTION INDUSTRY and ARCHITECTURE» (Tula, 2019), 2019, 194–197
[9] Methodology for assessing the consequences of emergency explosions of fuel and air mixtures: safety guide, Rostekhnadzor order No 137 of March 31, 2016. Ser. 27. Vol. 15, ZAO STC PB, M., 2016, 44 pp.
[10] Methods for substantiating the explosion resistance of buildings and structures during explosions of fuel and air mixtures at hazardous production facilities: safety guide, Rostekhnadzor order No 189 of may 13, 2015, Ser. 27, Vol. 17, ZAO STC PB, M., 2016, 78 pp.
[11] Nevskaya E. E., Glebova E. V., “Analysis of ways and means of increasing the level of protection of buildings and structures from the action of shock waves”, Labor Safety in industry, 2017, no. 2, 73–78
[12] Zhuravlev G. M., Kurien N. S., “Statement of the problem of mathematical modeling of explosion resistance and guaranteed destruction of plates by explosive load”, Scientific and technical journal. Fundamental and applied problems of engineering and technology, 2017, no. 2, 56–63
[13] Rastorguev B. S., Plotnikov A. I., Khusnutdinov D. Z., Design of buildings and structures in case of emergency explosive impacts, ASV publishing House, M., 2007, 152 pp.
[14] Efremov K. V., Lisanov M. V., Sofin A. S., etc., “Calculation of zones of destruction of buildings and structures during explosions of fuel and air mixtures at hazardous production facilities”, Labor Safety in industry, 2011, no. 9, 70–77
[15] Segerlind L., Application of the finite element method, Mir, M., 1979, 392 pp.
[16] Agapova E. A., Degtyarev D. V., Lisanov M. V., et al., “Comparative analysis of Russian and foreign methods and computer programs for modeling emergency emissions and risk assessment”, Labor Safety in industry, 2015, no. 9, 71–78
[17] Orlenko L. P. (ed.), Physics of explosion, v. 1, Fizmatlit, M., 2002, 832 pp.
[18] Design of blast resistant buildings in petrochemical facilities, American Society of Civil Engineers, New York, 2010, 318 pp.
[19] Moxnes J. F. et al., “Experimental and numerical study of the fragmentation of expanding warhead casings by using different numerical codes and solution technics”, Defence Technology, 10 (2014), 161–176 | DOI
[20] Riedel W., Thoma K., Hiermaier S. Schmolinske E., “Penetration of reinforced concrete by BETA-B-500”, Numerical analysis using a new macroscopic concrete model for hydrocodes, Proceeding of 9th international symposium on interaction of the effects of munitions with structures (Berlin, 1999), 315–322
[21] Tham C. Y., “Reinforced concrete perforation and penetration simulation using Autodyn 3D”, Finite Elements in Analysis and Design,, 41 (2005), 1401–1410 | DOI
[22] Uddin N., Blast Protection of Civil Infrastructures and Vehicles Using Composites, New York, 2010, 488 pp.