Mathematical modeling of elasticity properties in the mechanics of composite materials
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 262-271

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents an overview of mathematical models that allow us to determine the effective elastic characteristics of various types of composite materials. The most well-known models are considered: virial decomposition, self-matching method, correlation approximation, and singular approximation. Models with a layered structure and matrix systems with a regular structure are considered.
Keywords: composites, mathematical models, modeling, plasticity, strength, elasticity.
@article{CHEB_2020_21_3_a21,
     author = {I. K. Arkhipov and V. I. Abramova and A. E. Gvozdev and O. V. Kuzovleva},
     title = {Mathematical modeling of elasticity properties in the mechanics of composite materials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {262--271},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a21/}
}
TY  - JOUR
AU  - I. K. Arkhipov
AU  - V. I. Abramova
AU  - A. E. Gvozdev
AU  - O. V. Kuzovleva
TI  - Mathematical modeling of elasticity properties in the mechanics of composite materials
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 262
EP  - 271
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a21/
LA  - ru
ID  - CHEB_2020_21_3_a21
ER  - 
%0 Journal Article
%A I. K. Arkhipov
%A V. I. Abramova
%A A. E. Gvozdev
%A O. V. Kuzovleva
%T Mathematical modeling of elasticity properties in the mechanics of composite materials
%J Čebyševskij sbornik
%D 2020
%P 262-271
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a21/
%G ru
%F CHEB_2020_21_3_a21
I. K. Arkhipov; V. I. Abramova; A. E. Gvozdev; O. V. Kuzovleva. Mathematical modeling of elasticity properties in the mechanics of composite materials. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 262-271. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a21/