Mathematical modeling of elasticity properties in the mechanics of composite materials
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 262-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents an overview of mathematical models that allow us to determine the effective elastic characteristics of various types of composite materials. The most well-known models are considered: virial decomposition, self-matching method, correlation approximation, and singular approximation. Models with a layered structure and matrix systems with a regular structure are considered.
Keywords: composites, mathematical models, modeling, plasticity, strength, elasticity.
@article{CHEB_2020_21_3_a21,
     author = {I. K. Arkhipov and V. I. Abramova and A. E. Gvozdev and O. V. Kuzovleva},
     title = {Mathematical modeling of elasticity properties in the mechanics of composite materials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {262--271},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a21/}
}
TY  - JOUR
AU  - I. K. Arkhipov
AU  - V. I. Abramova
AU  - A. E. Gvozdev
AU  - O. V. Kuzovleva
TI  - Mathematical modeling of elasticity properties in the mechanics of composite materials
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 262
EP  - 271
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a21/
LA  - ru
ID  - CHEB_2020_21_3_a21
ER  - 
%0 Journal Article
%A I. K. Arkhipov
%A V. I. Abramova
%A A. E. Gvozdev
%A O. V. Kuzovleva
%T Mathematical modeling of elasticity properties in the mechanics of composite materials
%J Čebyševskij sbornik
%D 2020
%P 262-271
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a21/
%G ru
%F CHEB_2020_21_3_a21
I. K. Arkhipov; V. I. Abramova; A. E. Gvozdev; O. V. Kuzovleva. Mathematical modeling of elasticity properties in the mechanics of composite materials. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 262-271. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a21/

[1] Krivoglaz M. A., Cherevko A.S., “About elastic modules of a solid mixture”, Metal Physics and metal science, 8:2 (1959), 161–164

[2] Kanaun S. K., “Self-consistent field Method in the problem of effective properties of an elastic composite”, Applied mechanics and technical physics, 1975, no. 4, 194

[3] Shermergor T. D., Theory of elasticity of micro-homogeneous media, Nauka, M., 1977, 399 pp.

[4] Arkhipov I. K., Tolokonnikov L. A., “Effective relations between stresses and deformations in the correlation theory of elastic-plastic deformations”, Izvestiya AN SSSR. Solid mechanics, 2 (1984), 196–200 | MR

[5] Arkhipov I. K., Gerlein O. V., “Correlation characteristics of the plastic stiffness of a chaotically reinforced composite”, News of universities. Mathematics, 1982:7, 66–70

[6] Fokin A. G., Shermergor T. D., “Calculation of effective elastic modules of composite materials taking into account multiparticle interactions”, Applied mechanics and technical physics, 1969, no. 1, 51 | Zbl

[7] Livshits I. M., Rosenzweig L. N., “On the theory of elastic properties of polycrystals”, Journal of experimental and theoretical physics, 11:1946, 967

[8] Fokin A. G., Shermergor T. D., “Statistical description of the elastic field of layered materials”, Engineering and physical journal. Solid mechanics, 1968, no. 4, 93

[9] Fokin A. G., Shermergor T. D., “Effective elastic modulus of a composite composed of anisotropic layers”, Mechanics of polymers, 1975, no. 3, 408

[10] Yeh R. H. T., “Variational principles of elastic moduli of composite materials”, J. App. Phys., 1970, no. 8, 3353 | DOI

[11] Yeh R. H. T., “Variational bounds of the elastic moduli of twophase materials”, J. App. Phys., 1971, no. 3, 1101 | DOI | MR