Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 250-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an approximate calculation of a curvilinear integral $$J(f;\Gamma):=\int\limits_{\Gamma}f(x_1,x_2,\ldots,x_m)dt$$ when the curve $\Gamma$ is given by parametric equations $$x_{1}=\varphi_{1}(t), x_{2}=\varphi_{2}(t),\ldots,x_{m}=\varphi_{m}(t), 0\leq t\leq L$$ the quadrature formula is entered into consideration $$J(f;\Gamma):\approx\sum_{k=1}^{N}p_{k} f\Bigl(\varphi_{1}(t_k), \varphi_{2}(t_k), \ldots, \varphi_{m}(t_k)\Bigr),$$ where $P=\left\{p_{k}\right\}_{k=1}^{N}$ and $T:=\left\{t_{k}:0\leq t_{1}$– are arbitrary vector coefficients and nodes. Let $H^{\omega_{1},\ldots,\omega_{m}}[0,L]$– sets of curves $\Gamma$, whose coordinate functions $\varphi_{i}(t)\in H^{\omega_{i}}[0,L] \ (i=\overline{1,m}),$ where $\omega_{i}(t) \ (i=\overline{1,m})$– are given moduli of continuity $\mathfrak{M}_{\rho}^{\omega,p}$– functions class $f(M),$ defined in point $M\in\Gamma,$ such for any two points $M^{\prime}=M(x_{1}^{\prime},x_{2}^{\prime},\ldots,x_{m}^{\prime}),$ $M^{\prime\prime}=M(x_{1}^{\prime\prime},x_{2}^{\prime\prime},\ldots,x_{m}^{\prime\prime})$ belonging to a curve $\Gamma \in H^{\omega_{1},\ldots,\omega_{m}}[0,L]$ satsify the condition $$\Bigl|f(M^{\prime})-f(M^{\prime\prime})\Bigr|\le\omega(\rho_{p}(M^{\prime}, M^{\prime\prime})),$$ where $$\rho_{p}(M^{\prime}, M^{\prime\prime})=\left\{\sum_{i=1}^{m}|x^{\prime}_{i}-x_{i}^{\prime\prime}|^{p}\right\}^{1/p}, \ 1\leq p\leq \infty,$$ $\omega(t)$– given moduls of continuity. It is proved that among all quadrature formulas of the above from, the best for a class of functions $\mathfrak{M}_{\rho}^{\omega,p}$ and a class of curves $H^{\omega_{1},\ldots,\omega_{m}}[0,1]$, is the formula of average rectangles. The exact error estimate of the best quadrature formula is calculated for all the functional classes under consideration and the curves are given a generalization for more general classes of functions.
Keywords: curvilinear integral, quadrature formula, error, rectangle formula, functions class, nodes.
@article{CHEB_2020_21_3_a20,
     author = {M. Sh. Shabozov and M. K. Abdukarimzoda},
     title = {Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {250--261},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a20/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - M. K. Abdukarimzoda
TI  - Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 250
EP  - 261
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a20/
LA  - ru
ID  - CHEB_2020_21_3_a20
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A M. K. Abdukarimzoda
%T Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves
%J Čebyševskij sbornik
%D 2020
%P 250-261
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a20/
%G ru
%F CHEB_2020_21_3_a20
M. Sh. Shabozov; M. K. Abdukarimzoda. Best quadrature formulas calculation of curvilinear integrals for some classes of functions and currves. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 250-261. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a20/

[1] Nikol'skiy S.M., “Quadrature formulas”, Izv. AN USSR. Series mat., 1952, no. 16, 181–196 (in Russian) | MR | Zbl

[2] Vakarchuk S.B., “Optimal formula for the numerical integration of curvilinear integral of the first kind for some classes of functions and curves”, Ukr. mat. zhurnal, 38:5 (1986), 643–645 (in Russian) | MR | Zbl

[3] Shabozov M.Sh., Mirpochchoev F.M., “Optimizing approximate integration of curvilinear integral of the first type for some classes functions and curves”, DAN RT, 53:6 (2010), 415–419 (in Russian)

[4] Tukhliev K., “The best quadrature formulas for the approximate calculation of a curvilinear integral of the first kind for some classes of functions and curve”, News of Tula State University. Natural Sciences, 2013, no. 2, 50–57 (in Russian)

[5] Tukhliev K., “Optimal quadrature formulas for the approximate calculation of a curvilinear integral of the first kind for some classes of functions and curve”, Simulation and analysis of information systems, 20:3 (2013), 121–129 (in Russian)

[6] Shabozov M. Sh., “About the best quadrature formulas for calculation of curvilinear integral in some classes functions and curves”, Mat. Notes, 96:7 (2014), 637–640 (in Russian) | Zbl

[7] Korneichuk N., Exact constant in theory approximations, Nauka, M., 1987 pp. (in Russian) | MR

[8] Korneichuk N.P., “Best cubature formulas for some classes of functions of many variables”, Mat. Notes, 3:5 (1968), 565–576 (in Russian) | Zbl