Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_3_a15, author = {V. V. Iudelevich}, title = {On the mean value of functions related to the divisors function in the ring of polynomials over a finite field}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {196--214}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a15/} }
TY - JOUR AU - V. V. Iudelevich TI - On the mean value of functions related to the divisors function in the ring of polynomials over a finite field JO - Čebyševskij sbornik PY - 2020 SP - 196 EP - 214 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a15/ LA - ru ID - CHEB_2020_21_3_a15 ER -
V. V. Iudelevich. On the mean value of functions related to the divisors function in the ring of polynomials over a finite field. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 196-214. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a15/
[1] L. Carlitz, “The arithmetic of polymomials in a Galois field”, Amer. J. Math., 54:1, 39–50 | DOI | MR
[2] S. Ramanujan, “Some formulae in the analytic theory of numbers”, The Messenger of Math., 45 (1916), 81–84 | MR
[3] M. Rosen, Number Theory in Function Fields, Springer, New York, 2002 | MR | Zbl
[4] O. Gorodetsky, A Polynomial Analogue of Landau's Theorem and Related Problems, 2016, arXiv: 1603.02890 [math.NT] | MR
[5] L. Bary-Soroker, Y. Smilansky, A. Wolf, On the function field analogue of Landau's theorem on sums of squares, 2016, arXiv: 1504.06809 [math.NT] | MR
[6] R. Lidl, H. Niederreiter, Finite fields, Cambridge University Press, 1996 | MR | MR | Zbl
[7] Karatsuba A.A., Basic Analytic Number Theory, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | MR | Zbl