On the mean value of functions related to the divisors function in the ring of polynomials over a finite field
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 196-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ g: \mathbb{F}_q[T] \rightarrow \mathbb{R} $ be a multiplicative function which values at the degrees of the irreducible polynomial, depends only on the exponent, such that $g(P^k)=d_k$ polynomial $P$ and for some arbitrary sequence of reals $\{d_k\}_{k=1}^{\infty}$. This paper regards the sum $$ T (N) = \sum\limits_{\substack{\deg F=N \\ F \text{ is monic}}}{g (F)}, $$ where $ F $ ranges over polynomials of degree $ N $ with leading coefficient equal to 1 (unitary polynomials). For the sum $ T (N) $, an exact formula is found, and various asymptotics are calculated in cases of $ q \to \infty; \ q \to \infty, \ N \to \infty; \ q ^ N \to \infty $. In particular, the following asymptotic formulas are obtained $$\sum\limits_{\substack{\deg F=N \\ F \text{ is monic}}}\tau(F^k)=\binom{k+N}{N}q^N+O_{N,k}\left(q^{N-1}\right),\ \ N\ge 1,\ q\to\infty; $$ $$ \sum\limits_{\substack{\deg F=N \\ F \text{ is monic}}}\dfrac{1}{\tau(F)}=\dfrac{q^N}{4^N}\left(\binom{2N}{N}-\dfrac{2}{3}\binom{2N-4}{N-2}q^{-1}+O\left(\ \dfrac{4^N}{\sqrt{N}}q^{-2}\right)\right),\ N\to\infty,\ q\to\infty; $$ $$\sum\limits_{\substack{\deg F=N \\ F \text{ is monic}}}\dfrac{1}{\tau(F)}=C_1\cdot\dfrac{\binom{2N}{N}}{4^N}q^N+O\left(\dfrac{q^{N-0.5}}{N^{1.5}}\right),\ \ C_1=\prod_{l=1}^{+\infty}\left(\sqrt{q^{2l}-q^{l}}\ln\dfrac{q^l}{q^l-1}\right)^{\pi_q(l)},\ q^N\to\infty;$$ where $\tau(F)$ is a number of monic divisors of $F$, and $\pi_q(l)$ is a number of monic irreducible polynomials of degree $l$. The second and third equalities are analogous for polynomials over a finite field of one of Ramanujan's results $$\sum_{n\leq x}{\dfrac{1}{d(n)}}=\dfrac{x}{\sqrt{\ln x}}\left(a_0+\dfrac{a_1}{\ln{x}}+\ldots+\dfrac{a_N}{(\ln{x})^N}+O_N\left(\dfrac{1}{(\ln{x})^{N+1}}\right)\right),$$ where $d(n)$ is a classical divisor function, and $a_i$ are some constants. In particular, $$a_0=\dfrac{1}{\sqrt{\pi}}\prod\limits_{p}\ln\dfrac{p}{p-1}\sqrt{p(p-1)}.$$
Keywords: the ring of polynomials over a finite field, divisor function.
@article{CHEB_2020_21_3_a15,
     author = {V. V. Iudelevich},
     title = {On the mean value of functions related to the divisors function in the ring of polynomials over a finite field},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {196--214},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a15/}
}
TY  - JOUR
AU  - V. V. Iudelevich
TI  - On the mean value of functions related to the divisors function in the ring of polynomials over a finite field
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 196
EP  - 214
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a15/
LA  - ru
ID  - CHEB_2020_21_3_a15
ER  - 
%0 Journal Article
%A V. V. Iudelevich
%T On the mean value of functions related to the divisors function in the ring of polynomials over a finite field
%J Čebyševskij sbornik
%D 2020
%P 196-214
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a15/
%G ru
%F CHEB_2020_21_3_a15
V. V. Iudelevich. On the mean value of functions related to the divisors function in the ring of polynomials over a finite field. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 196-214. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a15/

[1] L. Carlitz, “The arithmetic of polymomials in a Galois field”, Amer. J. Math., 54:1, 39–50 | DOI | MR

[2] S. Ramanujan, “Some formulae in the analytic theory of numbers”, The Messenger of Math., 45 (1916), 81–84 | MR

[3] M. Rosen, Number Theory in Function Fields, Springer, New York, 2002 | MR | Zbl

[4] O. Gorodetsky, A Polynomial Analogue of Landau's Theorem and Related Problems, 2016, arXiv: 1603.02890 [math.NT] | MR

[5] L. Bary-Soroker, Y. Smilansky, A. Wolf, On the function field analogue of Landau's theorem on sums of squares, 2016, arXiv: 1504.06809 [math.NT] | MR

[6] R. Lidl, H. Niederreiter, Finite fields, Cambridge University Press, 1996 | MR | MR | Zbl

[7] Karatsuba A.A., Basic Analytic Number Theory, Springer-Verlag, Berlin–Heidelberg, 1993 | MR | MR | Zbl