On the asymptotic behavior of some sums involving the number of prime divisors function
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 186-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider sums of values of the composition of a real periodic arithmetic function and the number of prime divisors function over integers not exceeding a given bound. The prime divisors may be counted as with their multiplicity or without it, and we can restrict these divisors to the additional condition of belonging to some special set. This special set may be, for example, a sum of several arithmetic progressions with a given difference or imply an analog of prime number theorem with a power decrement in the remainder term. Moreover, instead of the number of prime divisors function we can consider an arbitrary real additive function that equals to one on primes. As an example of the periodic arithmetic function we can consider the Legendre symbol. In the paper we prove asymptotic formulae for such sums and investigate their behavior. The proof uses the decomposition of the periodic arithmetic function into additive characters of the residue group, so the problem reduces to special trigonometric sums with the number of prime divisors function in the exponent. In order to establish asymptotic formulae for such sums we consider the corresponding Dirichlet series, accomplish its analytic continuation and make use of the Perron formula and complex integration method in specially adapted form.
Keywords: restrictions on prime divisors, number of prime divisors, trigonometric sum, complex integration method.
@article{CHEB_2020_21_3_a14,
     author = {M. E. Changa},
     title = {On the asymptotic behavior of some sums involving the number of prime divisors function},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {186--195},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a14/}
}
TY  - JOUR
AU  - M. E. Changa
TI  - On the asymptotic behavior of some sums involving the number of prime divisors function
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 186
EP  - 195
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a14/
LA  - ru
ID  - CHEB_2020_21_3_a14
ER  - 
%0 Journal Article
%A M. E. Changa
%T On the asymptotic behavior of some sums involving the number of prime divisors function
%J Čebyševskij sbornik
%D 2020
%P 186-195
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a14/
%G ru
%F CHEB_2020_21_3_a14
M. E. Changa. On the asymptotic behavior of some sums involving the number of prime divisors function. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 186-195. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a14/

[1] Prachar K., Primzahlverteilung, Springer-Verlag, Berlin, 1957 | MR | Zbl

[2] Landau E., Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909 | MR

[3] Karatsuba A.A., “A property of the set of prime numbers”, Russian Mathematical Surveys, 66:2 (2011), 209–220 | DOI | MR | Zbl

[4] Karatsuba A.A., “On a property of the set of prime numbers as a multiplicative basis of integers”, Doklady RAS, 439:2 (2011), 159–162 | MR | Zbl

[5] Vinogradov I. M., “Some common property of the prime number distribution”, Math. Sbornik, 7(49):2 (1940), 365–372

[6] Changa M. E., “Primes in special intervals and additive problems with such numbers”, Mathematical Notes, 73:3 (2003), 389–401 | DOI | MR | Zbl

[7] Gritsenko S.A., “A problem of I.M. Vinogradov”, Mathematical Notes, 39:5 (1986), 341–350 | DOI | MR

[8] Ren X. M., “Vinogradov's exponential sum over primes”, Acta Arith., 124:3 (2006), 269–285 | DOI | MR | Zbl

[9] Mauduit C., Rivat J., “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Annals of Mathematics. Second Series, 171:3 (2010), 1591–1646 | DOI | MR | Zbl

[10] Changa M. E., “On the quantity of numbers of special form depending on the parity of the number of their different prime divisors”, Mathematical Notes, 97:6 (2015), 941–945 | DOI | MR | Zbl

[11] Changa M. E., “On the relation between quantities of integers with even and odd number of distinct prime divisors with some restrictions on them”, Mat. Metody i Prilozheniya, Trudy XX Mat. Chteniy RGSU, APPiPPRO, M., 2011, 121–125

[12] Changa M. E., “A problem involving integers all of whose prime divisors belong to given arithmetic progression”, Russian Mathematical Surveys, 71:4 (2016), 790–792 | DOI | MR | Zbl

[13] Changa M. E., “On integers whose number of prime divisors belongs to a given residue class”, Izvestiya: Mathematics, 83:1 (2019), 173–183 | DOI | MR | Zbl

[14] Changa M. E., “On a sum of Legendre symbols”, Russian Mathematical Surveys, 73:5 (2018), 919–921 | DOI | MR | Zbl

[15] Changa M. E., “On the distribution of integers with restrictions on the quantity of their prime divisors”, Algebra, Teoriya chisel i diskretnaya Geometriya: sovremennye problemy i prilozheniya, Materialy XV mezhdunarodnoy konferentsii, TGPU, Tula, 2018, 242–243

[16] Changa M. E., “On sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions”, Izvestiya: Mathematics, 69:2 (2005), 423–438 | DOI | MR | Zbl

[17] Changa M. E., “Numbers whose prime divisors lie in special intervals”, Izvestiya: Mathematics, 67:4 (2003), 837–848 | DOI | MR | Zbl