Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_3_a14, author = {M. E. Changa}, title = {On the asymptotic behavior of some sums involving the number of prime divisors function}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {186--195}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a14/} }
M. E. Changa. On the asymptotic behavior of some sums involving the number of prime divisors function. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 186-195. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a14/
[1] Prachar K., Primzahlverteilung, Springer-Verlag, Berlin, 1957 | MR | Zbl
[2] Landau E., Handbuch der Lehre von der Verteilung der Primzahlen, Teubner, Leipzig, 1909 | MR
[3] Karatsuba A.A., “A property of the set of prime numbers”, Russian Mathematical Surveys, 66:2 (2011), 209–220 | DOI | MR | Zbl
[4] Karatsuba A.A., “On a property of the set of prime numbers as a multiplicative basis of integers”, Doklady RAS, 439:2 (2011), 159–162 | MR | Zbl
[5] Vinogradov I. M., “Some common property of the prime number distribution”, Math. Sbornik, 7(49):2 (1940), 365–372
[6] Changa M. E., “Primes in special intervals and additive problems with such numbers”, Mathematical Notes, 73:3 (2003), 389–401 | DOI | MR | Zbl
[7] Gritsenko S.A., “A problem of I.M. Vinogradov”, Mathematical Notes, 39:5 (1986), 341–350 | DOI | MR
[8] Ren X. M., “Vinogradov's exponential sum over primes”, Acta Arith., 124:3 (2006), 269–285 | DOI | MR | Zbl
[9] Mauduit C., Rivat J., “Sur un problème de Gelfond: la somme des chiffres des nombres premiers”, Annals of Mathematics. Second Series, 171:3 (2010), 1591–1646 | DOI | MR | Zbl
[10] Changa M. E., “On the quantity of numbers of special form depending on the parity of the number of their different prime divisors”, Mathematical Notes, 97:6 (2015), 941–945 | DOI | MR | Zbl
[11] Changa M. E., “On the relation between quantities of integers with even and odd number of distinct prime divisors with some restrictions on them”, Mat. Metody i Prilozheniya, Trudy XX Mat. Chteniy RGSU, APPiPPRO, M., 2011, 121–125
[12] Changa M. E., “A problem involving integers all of whose prime divisors belong to given arithmetic progression”, Russian Mathematical Surveys, 71:4 (2016), 790–792 | DOI | MR | Zbl
[13] Changa M. E., “On integers whose number of prime divisors belongs to a given residue class”, Izvestiya: Mathematics, 83:1 (2019), 173–183 | DOI | MR | Zbl
[14] Changa M. E., “On a sum of Legendre symbols”, Russian Mathematical Surveys, 73:5 (2018), 919–921 | DOI | MR | Zbl
[15] Changa M. E., “On the distribution of integers with restrictions on the quantity of their prime divisors”, Algebra, Teoriya chisel i diskretnaya Geometriya: sovremennye problemy i prilozheniya, Materialy XV mezhdunarodnoy konferentsii, TGPU, Tula, 2018, 242–243
[16] Changa M. E., “On sums of multiplicative functions over numbers all of whose prime divisors belong to given arithmetic progressions”, Izvestiya: Mathematics, 69:2 (2005), 423–438 | DOI | MR | Zbl
[17] Changa M. E., “Numbers whose prime divisors lie in special intervals”, Izvestiya: Mathematics, 67:4 (2003), 837–848 | DOI | MR | Zbl