Smooth manifold of one-dimensional lattices
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 165-185

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the foundations of the theory of smooth varieties of number-theoretic lattices are laid. The simplest case of one-dimensional lattices is considered. In subsequent articles, we will first consider the case of one-dimensional shifted lattices, then the General case of multidimensional lattices, and finally the case of multidimensional shifted lattices. In this paper, we define a homeomorphic mapping of the space of one-dimensional lattices to the set of all real numbers $\mathbb{R}$. Thus, it is established that the space of one-dimensional lattices $PR_1$ is locally Euclidean space of dimension $1$. Since the metric on these spaces is not Euclidean, but is "logarithmic", unexpected results are obtained in the one-dimensional case about derivatives of the main functions, such as the lattice determinant, the hyperbolic lattice parameter, the norm minimum, the lattice Zeta function, and the hyperbolic lattice Zeta function. The paper considers the relationship of these functions with the issues of studying the error of approximate integration over parallelepipedal grids.
Keywords: lattices, metric space of lattices, smooth variety of lattices.
@article{CHEB_2020_21_3_a13,
     author = {E. N. Smirnova and O. A. Pikhtil'kova and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {Smooth manifold of one-dimensional lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {165--185},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a13/}
}
TY  - JOUR
AU  - E. N. Smirnova
AU  - O. A. Pikhtil'kova
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - Smooth manifold of one-dimensional lattices
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 165
EP  - 185
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a13/
LA  - ru
ID  - CHEB_2020_21_3_a13
ER  - 
%0 Journal Article
%A E. N. Smirnova
%A O. A. Pikhtil'kova
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T Smooth manifold of one-dimensional lattices
%J Čebyševskij sbornik
%D 2020
%P 165-185
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a13/
%G ru
%F CHEB_2020_21_3_a13
E. N. Smirnova; O. A. Pikhtil'kova; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Smooth manifold of one-dimensional lattices. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 165-185. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a13/