Smooth manifold of one-dimensional lattices
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 165-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the foundations of the theory of smooth varieties of number-theoretic lattices are laid. The simplest case of one-dimensional lattices is considered. In subsequent articles, we will first consider the case of one-dimensional shifted lattices, then the General case of multidimensional lattices, and finally the case of multidimensional shifted lattices. In this paper, we define a homeomorphic mapping of the space of one-dimensional lattices to the set of all real numbers $\mathbb{R}$. Thus, it is established that the space of one-dimensional lattices $PR_1$ is locally Euclidean space of dimension $1$. Since the metric on these spaces is not Euclidean, but is "logarithmic", unexpected results are obtained in the one-dimensional case about derivatives of the main functions, such as the lattice determinant, the hyperbolic lattice parameter, the norm minimum, the lattice Zeta function, and the hyperbolic lattice Zeta function. The paper considers the relationship of these functions with the issues of studying the error of approximate integration over parallelepipedal grids.
Keywords: lattices, metric space of lattices, smooth variety of lattices.
@article{CHEB_2020_21_3_a13,
     author = {E. N. Smirnova and O. A. Pikhtil'kova and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {Smooth manifold of one-dimensional lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {165--185},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a13/}
}
TY  - JOUR
AU  - E. N. Smirnova
AU  - O. A. Pikhtil'kova
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - Smooth manifold of one-dimensional lattices
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 165
EP  - 185
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a13/
LA  - ru
ID  - CHEB_2020_21_3_a13
ER  - 
%0 Journal Article
%A E. N. Smirnova
%A O. A. Pikhtil'kova
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T Smooth manifold of one-dimensional lattices
%J Čebyševskij sbornik
%D 2020
%P 165-185
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a13/
%G ru
%F CHEB_2020_21_3_a13
E. N. Smirnova; O. A. Pikhtil'kova; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Smooth manifold of one-dimensional lattices. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 165-185. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a13/

[1] U. A. Akramov, “Teorema izolyatsii dlya form, otvechayuschikh chisto veschestvennym algebraicheskim polyam”, Analiticheskaya teoriya chisel i teoriya funktsii: 10, Zap. nauch. seminara LOMI, 185, 1990, 5–12

[2] V. I. Arnold, Obyknovennye differentsialnye uravneniya, Nauka, M., 1975, 240 pp.

[3] K. I. Babenko, Osnovy chislennogo analiza, Nauka, M., 1986

[4] G. Veil, Algebraicheskaya teoriya chisel, IL, M., 1947

[5] B. N. Delone, D. K. Faddeev, “Teoriya irratsionalnostei tretei stepeni”, Nauchn. tr. Mat. in-t im. V. A. Steklova, 11, 1940 | MR

[6] L. P. Dobrovolskaya, N. M. Dobrovolskii, A. S. Simonov, “O pogreshnosti priblizhennogo integrirovaniya po modifitsirovannym setkam”, Chebyshevskii sbornik, 9:1(25) (2008), 185–223 | MR | Zbl

[7] N. M. Dobrovolskii, Otsenki otklonenii obobschennykh parallelepipedalnykh setok, Dep. v VINITI 24.08.84, No 6089-84

[8] N. M. Dobrovolskii, O kvadraturnykh formulakh na klassakh $E_s^\alpha(c)$ i $H_s^\alpha(c)$, Dep. v VINITI 24.08.84, No 6091-84

[9] N. M. Dobrovolskii, Giperbolicheskaya dzeta funktsiya reshetok, Dep. v VINITI 24.08.84, No 6090-84

[10] N. M. Dobrovolskii, “Mnogomernye teoretiko-chislovye setki i reshetki i ikh prilozheniya k priblizhennomu analizu”, IV Mezhdunarodnaya konferentsiya «Sovremennye problemy teorii chisel i ee prilozheniya», posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova, Aktualnye problemy (Tula, 10–15 sentyabrya, 2001), v. I, MGU, M., 2002, 54–80

[11] N. M. Dobrovolskii, E. V. Manokhin, “Banakhovy prostranstva periodicheskikh funktsii”, Izv. TulGU. Ser. Mekhanika. Matematika. Informatika, 4:3 (1998), 56–67 | MR

[12] N. M. Dobrovolskii, E. V. Manokhin, I. Yu. Rebrova, A. L. Roschenya, “O nepreryvnosti dzeta-funktsii setki s vesami”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 7:1 (2001), 82–86 | MR

[13] N. M. Dobrovolskii, I. Yu. Rebrova, A. L. Roschenya, “Nepreryvnost giperbolicheskoi dzeta-funktsii reshetok”, Mat. zametki, 63:4 (1998), 522–526 | MR | Zbl

[14] N. M. Dobrovolskii, A. L. Roschenya, “O chisle tochek reshetki v giperbolicheskom kreste”, Algebraicheskie, veroyatnostnye, geometricheskie, kombinatornye i funktsionalnye metody v teorii chisel, Sb.tez. dokl. II Mezhdunar. konf., Voronezh, 1995, 53

[15] N. M. Dobrovolskii, A. L. Roschenya, “Ob analiticheskom prodolzhenii giperbolicheskoi dzeta-funktsii ratsionalnykh reshetok”, Sovremennye problemy teorii chisel i ee prilozheniya, Sb. tez. dokl. III Mezhdunar. konf., Tula, 1996, 49

[16] N. M. Dobrovolskii, A. L. Roschenya, “O nepreryvnosti giperbolicheskoi dzeta-funktsii reshetok”, Izv. Tul. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 2:1 (1996), 77–87 | MR

[17] N. M. Dobrovolskii, A. L. Roschenya, “O chisle tochek reshetki v giperbolicheskom kreste”, Mat. zametki, 63:3 (1998), 363–369 | MR | Zbl

[18] N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, I. N. Balaba, I. Yu. Rebrova, “Algebra ryadov Dirikhle monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 180–196 | MR | Zbl

[19] Dzh. V. S. Kassels, Vvedenie v geometriyu chisel, Mir, M., 1965, 420 pp.

[20] A. N. Kormacheva, “Priblizhenie kvadratichnykh algebraicheskikh reshetok tselochislennymi reshetkami II”, Chebyshevckii sbornik, 21:3 (2019), 215–222 | MR

[21] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963

[22] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004, 288 pp.

[23] O. V. Lokutsievskii, M. B. Gavrikov, Nachala chislennogo analiza, TOO “Yanus”, M., 1995 | MR

[24] N. V. Maksimenko, “Prostranstvo ryadov Dirikhle dlya mnogomernykh reshetok i algebra ryadov Dirikhle reshetok, povtoryayuschikhsya umnozheniem”, Chebyshevckii sbornik, 21:1 (2020), 233–246 | MR

[25] I. Yu. Rebrova, “Nepreryvnost obobschennoi giperbolicheskoi dzeta-funktsii reshetok i ee analiticheskoe prodolzhenie”, Izv. TulGU. Ser. Mekhanika. Matematika. Informatika, 4:3 (1998), 99–108 | MR

[26] B. F. Skubenko, “O proizvedenii $n$ lineinykh form ot $n$ peremennykh”, Trudy MIAN SSSR, 158, 1981, 175–179 | MR | Zbl

[27] B. F. Skubenko, “Teorema izolyatsii dlya razlozhimykh form chisto veschestvennykh algebraicheskikh polei stepeni $n\geqslant 3$”, Analiticheskaya teoriya chisel i teoriya funktsii. 4, Zap. nauch. seminara LOMI, 112, 1981, 167–171 | Zbl

[28] B. F. Skubenko, “Tsiklicheskie mnozhestva chisel i reshetok”, Analiticheskaya teoriya chisel i teoriya funktsii. 8, Zap. nauch. seminara LOMI, 160, 1987, 151–158

[29] B. F. Skubenko, “Minimumy razlozhimoi kubicheskoi formy ot trekh peremennykh”, Analiticheskaya teoriya chisel i teoriya funktsii. 9, Zap. nauch. seminara LOMI, 168, 1988, 125–139 | Zbl

[30] B. F. Skubenko, “Minimumy razlozhimykh form stepeni $n$ ot $n$ peremennykh pri $n\geqslant 3$”, Modulyarnye funktsii i kvadratichnye formy. 1, Zap. nauch. seminara LOMI, 183, 1990, 142–154

[31] E. N. Smirnova, O. A. Pikhtilkova, N. N. Dobrovolskii, N. M. Dobrovolskii, “Algebraicheskie reshetki v metricheskom prostranstve reshetok”, Chebyshevskii sb., 18:4 (2017), 326–338 | MR | Zbl

[32] F. Uorner, Osnovy teorii gladkikh mnogoobrazii i gruppy Li, Mir, M., 1987, 304 pp. | MR

[33] K. K. Frolov, “Otsenki sverkhu pogreshnosti kvadraturnykh formul na klassakh funktsii”, DAN SSSR, 231:4 (1976), 818–821 | MR | Zbl

[34] K. K. Frolov, Kvadraturnye formuly na klassakh funktsii, Dis. ... kand. fiz.-mat. nauk, VTs AN SSSR, M., 1971 | MR