Lower estimates of polynomials and linear forms in the values of $F$-series
Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 142-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper applies a modification of the generalized Sigel – Shidlovscii's method to values of $F$ – series at sufficiently small $p$ – adic points for a given $p$. The generalized Siegel – Shidlovskii's method is considerably developed in works by Chirskii V. G., Bertrand D., Yebbou Y, Matala–Aho T., Zudilin V. V., Matveev V. Yu., Andre Y. et al. But these papers dealt with the so called global relations and related notions such as infinite linear and algebraic independence. Here we consider values at points from a given field $\mathbb{Q}_p$. The notion of the infinite algebraic independence is related to a direct product of infinite set of fields $\mathbb{Q}_p$, it means that if $\alpha_1, \ldots, \alpha_n$ – are elements of this direct product with coordinates $\alpha_1^{(p)}, \ldots, \alpha_n^{(p)}$ in the field $\mathbb{Q}_p$, then for any non–zero polynomial with integer coefficients there exist infinitely many primes $p$ such that in $\mathbb{Q}_p$ one has $P(\alpha_1^{(p)}, \ldots, \alpha_n^{(p)})\neq 0$. But these results give no information for a specific $p$. Here we prove that a non–zero linear form and a non–zero polynomial do not vanish at values of the considered series at $p$ – adic points which are small enough, depending on the height of a linear form or a polynomial and depending on the degree of the polynomial. The results of these paper will be applied to the values of generalized hypergeometric $F$ – series.
Keywords: $F$ – series, estimates linear forms and polynomials, $p$ – adic numbers.
@article{CHEB_2020_21_3_a12,
     author = {A. Kh. Munos Vaskes},
     title = {Lower estimates of polynomials and linear forms in the values of $F$-series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {142--164},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a12/}
}
TY  - JOUR
AU  - A. Kh. Munos Vaskes
TI  - Lower estimates of polynomials and linear forms in the values of $F$-series
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 142
EP  - 164
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a12/
LA  - ru
ID  - CHEB_2020_21_3_a12
ER  - 
%0 Journal Article
%A A. Kh. Munos Vaskes
%T Lower estimates of polynomials and linear forms in the values of $F$-series
%J Čebyševskij sbornik
%D 2020
%P 142-164
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a12/
%G ru
%F CHEB_2020_21_3_a12
A. Kh. Munos Vaskes. Lower estimates of polynomials and linear forms in the values of $F$-series. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 142-164. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a12/

[1] Koblits N., $p$–adicheskie chisla, $p$–adicheskii analiz i dzeta-funktsii, Mir, M., 1982 | MR

[2] Chebyshev P. L., Izbrannye matematicheskie trudy, GITTI, 1946 | MR

[3] Chirskii V. G., “Arifmeticheskie svoistva obobschennykh gipergeometricheskikh $F$ – ryadov”, Doklady Akademii nauk, 483:3 (2018), 257–259

[4] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Doklady Akademii nauk, matematika, 439:6 (2014), 677–679 | MR

[5] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh ryadov s periodicheskimi koeffitsientami”, Izvestiya RAN. Seriya matematicheskaya, 81:2 (2017), 215–232 | MR | Zbl

[6] Chirskii V. G., “Arifmeticheskie svoistva poliadicheskikh chisel”, Chebyshevskii sbornik, 16:1 (2015), 254–264 | MR | Zbl

[7] Chirskii V. G., “Lineinaya nezavisimost $p$ – adicheskikh znachenii nekotorykh $q$ – bazisnykh gipergeometricheskikh ryadov”, Fund. i prikl. matem., 5:2 (1999), 619–625 | MR | Zbl

[8] Chirskii V. G., “O globalnykh sootnosheniyakh”, Mat. zametki, 48:2 (1990), 123–127 | Zbl

[9] Chirskii V. G., “O preobrazovaniyakh periodicheskikh posledovatelnostei”, Chebyshevskii sbornik, 17:3 (2016), 180–185

[10] Chirskii V. G., “Ob arifmeticheskikh svoistvakh obobschennykh gipergeometricheskikh ryadov s irratsionalnymi parametrami”, Izvestiya RAN. Seriya matematicheskaya, 78:6 (2014), 193–210 | MR | Zbl

[11] Chirskii V. G., “Ob arifmeticheskikh svoistvakh ryada Eilera”, Vestnik Moskovskogo Universiteta. Seriya 1: Matematika. Mekhanika, 2015, no. 1, 59–61 | MR | Zbl

[12] Chirskii V. G., “Otsenki lineinykh form i mnogochlenov ot sovokupnostei poliadicheskikh chisel”, Chebyshevskii sbornik, 12:4 (2011), 129–133 | MR | Zbl

[13] Chirskii V. G., “Periodicheskie i neperiodicheskie konechnye posledovatelnosti”, Chebyshevskii sbornik, 18:2 (2017), 275–278 | MR | Zbl

[14] Chirskii V. G., “Priblizheniya Ermita – Pade dlya nekotorykh $q$ – bazisnykh gipergeometricheskikh ryadov”, Vestnik Moskovskogo Universiteta. Seriya 1: Matematika. Mekhanika, 2000, no. 2, 7–11 | Zbl

[15] Chirskii V. G., Matveev V. Yu., “O nekotorykh svoistvakh poliadicheskikh razlozhenii”, Chebyshevskii sbornik, 14:2 (2013), 164–172 | MR | Zbl

[16] Chirskii V. G., Matveev V. Yu., “O predstavlenii naturalnykh chisel”, Chebyshevskii sbornik, 14:1 (2013), 92–101 | MR

[17] Chirskii V. G., Matveev V. Yu., “O predstavlenii naturalnykh chisel”, Vestnik MGU. Seriya 1. Matematika. Mekhanika, 2013, no. 6, 57–59 | MR | Zbl

[18] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[19] André Y., Séries Gevrey de type arithmétique, Inst. Math., Jussieu

[20] Bertrand D., Chirskii V. G., Yebbou Y., “Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse, XIII:2 (2004), 241–260 | DOI | MR | Zbl

[21] Chirskii V. G., “Arithmetic properties of Generalized Hypergeometric Series”, Russian Journal of Mathematical Physics, 27:2 (2020), 175–184 | DOI | MR | Zbl

[22] Chirskii V. G., “Product formula, global relations and polyadic integers”, Russian Journal of Mathematical Physics, 26:3 (2019), 286–305 | DOI | MR | Zbl

[23] Matala–Aho T., Zudilin W., “Euler factorial series and global relations”, J. Number Theory, 186 (2018), 202–210 | DOI | MR | Zbl