Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_3_a10, author = {Alexei Kanel Belov and Louis Rowen}, title = {The {Braun--Kemer--Razmyslov} theorem for affine $PI$-algebras}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {89--128}, publisher = {mathdoc}, volume = {21}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a10/} }
Alexei Kanel Belov; Louis Rowen. The Braun--Kemer--Razmyslov theorem for affine $PI$-algebras. Čebyševskij sbornik, Tome 21 (2020) no. 3, pp. 89-128. http://geodesic.mathdoc.fr/item/CHEB_2020_21_3_a10/
[1] S.A. Amitsur, “A generalization of Hilbert Nullstellensatz”, Proc. Amer. Math. Soc., 8 (1957), 649–656 | MR | Zbl
[2] S.A. Amitsur, “A note on P.I. rings”, Israel J. Math., 10 (1971), 210–211 | DOI | MR | Zbl
[3] S.A. Amitsur, C. Procesi, “Jacobson rings and Hilbert algebras with polynomial identities”, Ann. Mat. Pura Appl., 71 (1966), 67–72 | DOI | MR
[4] S.A. Amitsur, A. Regev, “P.I. algebras and their cocharacters”, J. of Algebra, 78 (1982), 248–254 | DOI | MR | Zbl
[5] S.A. Amitsur, L. Small, “Affine algebras with polynomial identities”, Supplemento ai Rendiconti del Circolo Matematico di Palermo, 31 (1993) | MR | Zbl
[6] A. Belov, L. Bokut, L.H. Rowen, J. T. Yu, “The Jacobian Conjecture, together with Specht and Burnside-type problems”, Proc. Groups of Automorphisms in Birational and Affine Geometry, eds. M. Zaidenberg, M. Rich, M. Reizakis, Springer (to appear) | MR
[7] A.K. Belov, L. H. Rowen, Computational aspects of Polynomial Identities, A. K. Peters, 2005 | MR | Zbl
[8] A. Braun, “The nilpotency of the radical in a finitely generated PI-ring”, J. Algebra, 89 (1984), 375–396 | DOI | MR | Zbl
[9] M. Fayers, “Irreducible Specht modules for Hecke algebras of type A”, Advances in Math., 193 (2005), 438–452 | DOI | MR | Zbl
[10] M. Fayers, S. Lyle, S. Martin, “p-restriction of partitions and homomorphisms between Specht modules”, J. Algebra, 306 (2006), 175–190 | DOI | MR | Zbl
[11] N. Jacobson, Basic Algebra, v. II, second edition, Freeman and company, 1989 | MR | Zbl
[12] G. D. James, The Representation Theory of the Symmetric Groups, Lecture Notes in Math., 682, Springer-Verlag, New York, NY, 1978 | DOI | MR | Zbl
[13] G. James, A. Mathas, “The irreducible Specht modules in characteristic $2$”, Bull. London Math. Soc., 31 (1999), 457–62 | DOI | MR
[14] G. D. James, A. Kerber, The Representation Theory of the Symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison–Wesley, Reading, MA, 1981 | MR | Zbl
[15] Soviet Math. Dokl., 22 (1980), 750–753 | MR | Zbl
[16] A.R. Kemer, Ideals of identities of associative algebras, Translations of monographs, 87, Amer. Math. Soc., 1991 | DOI | MR | Zbl
[17] A.R. Kemer, “Multilinear identities of the algebras over a field of characteristic $p$”, Internat. J. Algebra Comput., 5:2 (1995), 189–197 | DOI | MR | Zbl
[18] J. Lewin, “A matrix representation for associative algebras I and II”, Trans. Amer. Math. Soc., 188:2 (1974), 293–317 | DOI | MR
[19] Unpublished, L'vov (Russian)
[20] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press, Oxford, 1995 | MR | Zbl
[21] A. Mathas, Iwahori–Hecke algebras and Schur algebras of the symmetric group, University Lecture Series, 15, American Mathematical Society, Providence, RI, 1999 | DOI | MR | Zbl
[22] Algebra and Logika, 13 (1974), 192–204 | DOI | MR | MR
[23] A. Regev, “Existence of identities in $A\otimes B$”, Israel J. Math., 11 (1972), 131–152 | DOI | MR | Zbl
[24] A. Regev, “The representations of $S_n$ and explicit identities for P. I. algebras”, J. Algebra, 51 (1978), 25–40 | DOI | MR | Zbl
[25] Richard Resco, Lance W. Small, J. T. Stafford, “Krull and Global Dimensions of Semiprime Noetherian $PI$-Rings”, Transactions of the American Mathematical Society, 274:1 (1982), 285–295 | DOI | MR | Zbl
[26] L.H. Rowen, Polynomial Identities in Ring Theory, Pure and Applied Mathematics, 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980 | MR | Zbl
[27] L.H. Rowen, Ring Theory, v. II, Pure and Applied Mathematics, 128, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[28] L.H. Rowen, Graduate algebra: Commutative View, AMS Graduate Studies in Mathematics, 73, 2006 | DOI | MR | Zbl
[29] L.H. Rowen, Graduate algebra: Noncommutative View, AMS Graduate Studies in Mathematics, 91, 2008 | DOI | MR | Zbl
[30] B.E. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Graduate Texts in Mathematics, 203, 2nd edition, Springer-Verlag, 2000 | MR
[31] A.I. Shirshov, “On certain non associative nil rings and algebraic algebras”, Mat. Sb., 41 (1957), 381–394 (Russian) | MR | Zbl
[32] A.I. Shirshov, “On rings with identity relations”, Mat. Sb., 43 (1957), 277–283 (Russian) | MR | Zbl
[33] Small L.W., “An example in PI rings”, J. Algebra, 17 (1971), 434–436 | DOI | MR | Zbl
[34] K.A. Zubrilin, “Algebras satisfying Capelli identities”, Sbornic Math., 186:3 (1995), 359–370 | DOI | MR | Zbl