Mapping degrees between homotopy space forms
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 94-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal G$ be the family of periodic groups of period either $2$ or $4$, and $\bar\Sigma^m$ be a homotopy $m$-space form where $\pi_1(\bar\Sigma^m)\in \mathcal G$. For $m=3$, we study the set $D(\bar\Sigma_1^m, \bar\Sigma_2^m)$ of degrees of the maps from $\bar\Sigma_1^m$ to $\bar\Sigma_2^m$.
Keywords: Homotopy spherical space forms, mapping degrees.
@article{CHEB_2020_21_2_a8,
     author = {D. Gon\c{c}alves and P. Wong and X. Zhao},
     title = {Mapping degrees between homotopy space forms},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {94--108},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/}
}
TY  - JOUR
AU  - D. Gonçalves
AU  - P. Wong
AU  - X. Zhao
TI  - Mapping degrees between homotopy space forms
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 94
EP  - 108
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/
LA  - en
ID  - CHEB_2020_21_2_a8
ER  - 
%0 Journal Article
%A D. Gonçalves
%A P. Wong
%A X. Zhao
%T Mapping degrees between homotopy space forms
%J Čebyševskij sbornik
%D 2020
%P 94-108
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/
%G en
%F CHEB_2020_21_2_a8
D. Gonçalves; P. Wong; X. Zhao. Mapping degrees between homotopy space forms. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 94-108. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/

[1] A. Adem, J. Milgram, Cohomology of Finite Groups, Springer-Verlag, New York–Heidelberg–Berlin, 1994 | MR | Zbl

[2] K. Brown, Cohomology of Groups, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl

[3] J. Davis, J. Milgram, “A survey of the Spherical Space Form Problem”, Mathematical Reports, 2:2 (1985), 223–284 | MR

[4] X. Du, “On Self-mapping Degrees of $S^3$-geometry manifolds”, Acta Mathematica Sinica, English Series, 25 (2009), 1243–1252 | DOI | MR

[5] S. Eilenberg, S. MacLane, “Homology of spaces with operators, II”, Trans. American Math. Soc., 65 (1949), 49–99 | DOI | MR | Zbl

[6] M. Golasinski, D. L. Gonçalves, “Homotopy spherical space forms{-}a numerical bound for homotopy types”, Hiroshima Math. J., 31 (2001), 107–116 | DOI | MR | Zbl

[7] M. Golasinski, D. L. Gonçalves, “Spherical space forms{-}Homotopy types and self-equivalences”, The Skye Conference Proceedings, Progr. Math., 215, Birkhäuser, Basel, 2004, 153–165 | MR | Zbl

[8] M. Golasinski, D. L. Gonçalves, “Spherical space forms{-}Homotopy types and self-equivalences for the groups $Z/a \rtimes Z/b$ and $Z/a \rtimes(Z/b \times Q_{2^i} )$”, Topology Appl., 146–147 (2005), 451–470 | DOI | MR | Zbl

[9] M. Golasinśki, D.L. Gonçalves, “Spherical space forms{-}Homotopy types and self-equivalences for the groups $Z/a\rtimes (Z/b \times T_{i}^*)$ and $Z/a \rtimes (Z/b \times O_{ n} ^*)$”, J. Homotopy Relat. Struct., 1:1 (2006), 29–45 | MR | Zbl

[10] M. Golasinśki, D.L. Gonçalves, “Spherical space forms{-}Homotopy types and self-equivalences for the group $(Z/a\rtimes Z/b)\times SL2$”, Canad. Math. Bull., 50:2 (2007), 206–214 | DOI | MR | Zbl

[11] M. Golasinśki, D. L. Gonçalves, “Spherical space forms{-}Homotopy self-equivalences and homotopy types, the case of the groups $Z/a \rtimes (Z/b \times TL_2(Fp))$”, Topology and its Applications, 56 (2009), 2726–2734 | DOI | MR

[12] D. L. Gonçalves, J. Guaschi, The classification of the virtually cyclic subgroups of the sphere braid groups, Springer Briefs in Mathematics, Springer, Cham, 2013, x+102 pp. | MR | Zbl

[13] D. L. Gonçalves, S. T. Martins, M. de Jesus Soares, “The cohomology ring of certain families of periodic virtually cyclic groups”, Internat. J. Algebra Comput., 27:7 (2017), 793–818 | DOI | MR | Zbl

[14] D. Gonçalves, P. Wong, “Nielsen numbers of self maps of $Sol$ $3$-manifolds”, Top. Appl., 159 (2012), 3729–3737 | DOI | MR | Zbl

[15] D. Gonçalves, P. Wong, “Homogeneous spaces in coincidence theory”, 10th Brazilian Topology Meeting (São Carlos, 1996), Mat. Contemp., 13, 1997, 143–158 | MR | Zbl

[16] D. Gonçalves, P. Wong, “Homogeneous spaces in coincidence theory II”, Forum Math., 17 (2005), 297–313 | MR | Zbl

[17] D. Gonçalves, P. Wong, X. Zhao, “Nielsen numbers of self maps of flat $3$-manifolds”, Bulletin Belgian Math. Society, 21 (2014), 193–222 | DOI | MR | Zbl

[18] D. Gonçalves, P. Wong, X. Zhao, “Nielsen theory on $3$-manifolds covered by $S^2 \times \mathbb R$”, Acta Math. Sinica, 31 (2015), 615–636 | DOI | MR | Zbl

[19] D. Gonçalves, P. Wong, X. Zhao, “Fixed point theory of spherical $3$-manifolds”, Top. Appl., 181 (2015), 134–49 | DOI | MR

[20] Gonçalves D., Wong P., Zhao X., “Mapping degrees between spherical $3$-manifolds”, Sbornik Math., 208:10 (2017), 1449–1472 | DOI | MR | Zbl

[21] R. Lee, C. B. Thomas, “Free finite group actions on $S^3$”, Bull. Amer. Math. Soc., 79 (1973), 211–215 | DOI | MR | Zbl

[22] P. Olum, “On mappings into spaces in which certain homotopy groups vanish”, Ann. Math., 57 (1953), 561–574 | DOI | MR | Zbl

[23] P. Olum, “Mappings of manifolds and the notion of degree”, Ann. Math., 58 (1953), 458–480 | DOI | MR | Zbl

[24] R.G. Swan, “A new method in fixed point theory”, Comment. Math. Helv., 34 (1960), 1–16 | DOI | MR | Zbl

[25] R.G. Swan, “Periodic resolutions for finite groups”, Ann. of Math., 72:2 (1960), 267–291 | DOI | MR | Zbl

[26] R. G. Swan, “The p-period of a finite group”, Illinois J. Math., 3 (1960), 341–346 | DOI | MR

[27] C. B. Thomas, “The oriented homotopy type of compact 3-manifolds”, Proc. London Math. Soc. (3), 19 (1969), 31–44 | DOI | MR | Zbl

[28] C. B. Thomas, “Homotopy classification of free actions by finite groups on $S^3$”, Proc. London Math. Soc. (3), 40:2 (1980), 284–297 | DOI | MR

[29] S. Tomoda, P. Zvengrowski, “Remarks on the cohomology of finite groups of $3$-manifolds”, Geometry Topology Monographs, 14, 2008, 519–556 | DOI | MR | Zbl