Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_2_a8, author = {D. Gon\c{c}alves and P. Wong and X. Zhao}, title = {Mapping degrees between homotopy space forms}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {94--108}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/} }
D. Gonçalves; P. Wong; X. Zhao. Mapping degrees between homotopy space forms. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 94-108. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/
[1] A. Adem, J. Milgram, Cohomology of Finite Groups, Springer-Verlag, New York–Heidelberg–Berlin, 1994 | MR | Zbl
[2] K. Brown, Cohomology of Groups, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | Zbl
[3] J. Davis, J. Milgram, “A survey of the Spherical Space Form Problem”, Mathematical Reports, 2:2 (1985), 223–284 | MR
[4] X. Du, “On Self-mapping Degrees of $S^3$-geometry manifolds”, Acta Mathematica Sinica, English Series, 25 (2009), 1243–1252 | DOI | MR
[5] S. Eilenberg, S. MacLane, “Homology of spaces with operators, II”, Trans. American Math. Soc., 65 (1949), 49–99 | DOI | MR | Zbl
[6] M. Golasinski, D. L. Gonçalves, “Homotopy spherical space forms{-}a numerical bound for homotopy types”, Hiroshima Math. J., 31 (2001), 107–116 | DOI | MR | Zbl
[7] M. Golasinski, D. L. Gonçalves, “Spherical space forms{-}Homotopy types and self-equivalences”, The Skye Conference Proceedings, Progr. Math., 215, Birkhäuser, Basel, 2004, 153–165 | MR | Zbl
[8] M. Golasinski, D. L. Gonçalves, “Spherical space forms{-}Homotopy types and self-equivalences for the groups $Z/a \rtimes Z/b$ and $Z/a \rtimes(Z/b \times Q_{2^i} )$”, Topology Appl., 146–147 (2005), 451–470 | DOI | MR | Zbl
[9] M. Golasinśki, D.L. Gonçalves, “Spherical space forms{-}Homotopy types and self-equivalences for the groups $Z/a\rtimes (Z/b \times T_{i}^*)$ and $Z/a \rtimes (Z/b \times O_{ n} ^*)$”, J. Homotopy Relat. Struct., 1:1 (2006), 29–45 | MR | Zbl
[10] M. Golasinśki, D.L. Gonçalves, “Spherical space forms{-}Homotopy types and self-equivalences for the group $(Z/a\rtimes Z/b)\times SL2$”, Canad. Math. Bull., 50:2 (2007), 206–214 | DOI | MR | Zbl
[11] M. Golasinśki, D. L. Gonçalves, “Spherical space forms{-}Homotopy self-equivalences and homotopy types, the case of the groups $Z/a \rtimes (Z/b \times TL_2(Fp))$”, Topology and its Applications, 56 (2009), 2726–2734 | DOI | MR
[12] D. L. Gonçalves, J. Guaschi, The classification of the virtually cyclic subgroups of the sphere braid groups, Springer Briefs in Mathematics, Springer, Cham, 2013, x+102 pp. | MR | Zbl
[13] D. L. Gonçalves, S. T. Martins, M. de Jesus Soares, “The cohomology ring of certain families of periodic virtually cyclic groups”, Internat. J. Algebra Comput., 27:7 (2017), 793–818 | DOI | MR | Zbl
[14] D. Gonçalves, P. Wong, “Nielsen numbers of self maps of $Sol$ $3$-manifolds”, Top. Appl., 159 (2012), 3729–3737 | DOI | MR | Zbl
[15] D. Gonçalves, P. Wong, “Homogeneous spaces in coincidence theory”, 10th Brazilian Topology Meeting (São Carlos, 1996), Mat. Contemp., 13, 1997, 143–158 | MR | Zbl
[16] D. Gonçalves, P. Wong, “Homogeneous spaces in coincidence theory II”, Forum Math., 17 (2005), 297–313 | MR | Zbl
[17] D. Gonçalves, P. Wong, X. Zhao, “Nielsen numbers of self maps of flat $3$-manifolds”, Bulletin Belgian Math. Society, 21 (2014), 193–222 | DOI | MR | Zbl
[18] D. Gonçalves, P. Wong, X. Zhao, “Nielsen theory on $3$-manifolds covered by $S^2 \times \mathbb R$”, Acta Math. Sinica, 31 (2015), 615–636 | DOI | MR | Zbl
[19] D. Gonçalves, P. Wong, X. Zhao, “Fixed point theory of spherical $3$-manifolds”, Top. Appl., 181 (2015), 134–49 | DOI | MR
[20] Gonçalves D., Wong P., Zhao X., “Mapping degrees between spherical $3$-manifolds”, Sbornik Math., 208:10 (2017), 1449–1472 | DOI | MR | Zbl
[21] R. Lee, C. B. Thomas, “Free finite group actions on $S^3$”, Bull. Amer. Math. Soc., 79 (1973), 211–215 | DOI | MR | Zbl
[22] P. Olum, “On mappings into spaces in which certain homotopy groups vanish”, Ann. Math., 57 (1953), 561–574 | DOI | MR | Zbl
[23] P. Olum, “Mappings of manifolds and the notion of degree”, Ann. Math., 58 (1953), 458–480 | DOI | MR | Zbl
[24] R.G. Swan, “A new method in fixed point theory”, Comment. Math. Helv., 34 (1960), 1–16 | DOI | MR | Zbl
[25] R.G. Swan, “Periodic resolutions for finite groups”, Ann. of Math., 72:2 (1960), 267–291 | DOI | MR | Zbl
[26] R. G. Swan, “The p-period of a finite group”, Illinois J. Math., 3 (1960), 341–346 | DOI | MR
[27] C. B. Thomas, “The oriented homotopy type of compact 3-manifolds”, Proc. London Math. Soc. (3), 19 (1969), 31–44 | DOI | MR | Zbl
[28] C. B. Thomas, “Homotopy classification of free actions by finite groups on $S^3$”, Proc. London Math. Soc. (3), 40:2 (1980), 284–297 | DOI | MR
[29] S. Tomoda, P. Zvengrowski, “Remarks on the cohomology of finite groups of $3$-manifolds”, Geometry Topology Monographs, 14, 2008, 519–556 | DOI | MR | Zbl