Mapping degrees between homotopy space forms
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 94-108

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal G$ be the family of periodic groups of period either $2$ or $4$, and $\bar\Sigma^m$ be a homotopy $m$-space form where $\pi_1(\bar\Sigma^m)\in \mathcal G$. For $m=3$, we study the set $D(\bar\Sigma_1^m, \bar\Sigma_2^m)$ of degrees of the maps from $\bar\Sigma_1^m$ to $\bar\Sigma_2^m$.
Keywords: Homotopy spherical space forms, mapping degrees.
@article{CHEB_2020_21_2_a8,
     author = {D. Gon\c{c}alves and P. Wong and X. Zhao},
     title = {Mapping degrees between homotopy space forms},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {94--108},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/}
}
TY  - JOUR
AU  - D. Gonçalves
AU  - P. Wong
AU  - X. Zhao
TI  - Mapping degrees between homotopy space forms
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 94
EP  - 108
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/
LA  - en
ID  - CHEB_2020_21_2_a8
ER  - 
%0 Journal Article
%A D. Gonçalves
%A P. Wong
%A X. Zhao
%T Mapping degrees between homotopy space forms
%J Čebyševskij sbornik
%D 2020
%P 94-108
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/
%G en
%F CHEB_2020_21_2_a8
D. Gonçalves; P. Wong; X. Zhao. Mapping degrees between homotopy space forms. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 94-108. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/