Mapping degrees between homotopy space forms
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 94-108
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathcal G$ be the family of periodic groups of period either $2$ or $4$, and $\bar\Sigma^m$ be a homotopy $m$-space form where $\pi_1(\bar\Sigma^m)\in \mathcal G$. For $m=3$, we study the set $D(\bar\Sigma_1^m, \bar\Sigma_2^m)$ of degrees of the maps from $\bar\Sigma_1^m$ to $\bar\Sigma_2^m$.
Keywords:
Homotopy spherical space forms, mapping degrees.
@article{CHEB_2020_21_2_a8,
author = {D. Gon\c{c}alves and P. Wong and X. Zhao},
title = {Mapping degrees between homotopy space forms},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {94--108},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/}
}
D. Gonçalves; P. Wong; X. Zhao. Mapping degrees between homotopy space forms. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 94-108. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a8/