Ideal right-angled polyhedra in Lobachevsky space
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 65-83

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a class of right-angled polyhedra in three-dimensional Lobachevsky space, all vertices of which lie on the absolute. New upper bounds on volumes in terms the number of faces of the polyhedron are obtained. Volumes of polyhedra with at most 23 faces are computed. It is shown that the minimum volumes are realized on antiprisms and twisted antiprisms. The first 248 values of volumes of ideal right-angled polyhedra are presented. Moreover, the class of polyhedra with isolated triangles is introduces and there are obtained combinatorial bounds on their existence as well as minimal examples of such polyhedra are given.
Keywords: Hyperbolic 3-space, ideal polyhedron, right-angled polyhedron, antiprism.
@article{CHEB_2020_21_2_a6,
     author = {A. Yu. Vesnin and A. A. Egorov},
     title = {Ideal right-angled polyhedra in {Lobachevsky} space},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {65--83},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - A. A. Egorov
TI  - Ideal right-angled polyhedra in Lobachevsky space
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 65
EP  - 83
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/
LA  - en
ID  - CHEB_2020_21_2_a6
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A A. A. Egorov
%T Ideal right-angled polyhedra in Lobachevsky space
%J Čebyševskij sbornik
%D 2020
%P 65-83
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/
%G en
%F CHEB_2020_21_2_a6
A. Yu. Vesnin; A. A. Egorov. Ideal right-angled polyhedra in Lobachevsky space. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 65-83. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/