Ideal right-angled polyhedra in Lobachevsky space
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 65-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a class of right-angled polyhedra in three-dimensional Lobachevsky space, all vertices of which lie on the absolute. New upper bounds on volumes in terms the number of faces of the polyhedron are obtained. Volumes of polyhedra with at most 23 faces are computed. It is shown that the minimum volumes are realized on antiprisms and twisted antiprisms. The first 248 values of volumes of ideal right-angled polyhedra are presented. Moreover, the class of polyhedra with isolated triangles is introduces and there are obtained combinatorial bounds on their existence as well as minimal examples of such polyhedra are given.
Keywords: Hyperbolic 3-space, ideal polyhedron, right-angled polyhedron, antiprism.
@article{CHEB_2020_21_2_a6,
     author = {A. Yu. Vesnin and A. A. Egorov},
     title = {Ideal right-angled polyhedra in {Lobachevsky} space},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {65--83},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/}
}
TY  - JOUR
AU  - A. Yu. Vesnin
AU  - A. A. Egorov
TI  - Ideal right-angled polyhedra in Lobachevsky space
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 65
EP  - 83
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/
LA  - en
ID  - CHEB_2020_21_2_a6
ER  - 
%0 Journal Article
%A A. Yu. Vesnin
%A A. A. Egorov
%T Ideal right-angled polyhedra in Lobachevsky space
%J Čebyševskij sbornik
%D 2020
%P 65-83
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/
%G en
%F CHEB_2020_21_2_a6
A. Yu. Vesnin; A. A. Egorov. Ideal right-angled polyhedra in Lobachevsky space. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 65-83. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/

[1] Andreev E. M., “On convex polyhedra of finite volume in Lobachevskii space”, Math. USSR-Sb., 12:2 (1970), 255–259 | DOI | MR | Zbl

[2] Vesnin A. Yu., “Right-angled polyhedra and hyperbolic 3-manifolds”, Russian Math. Surveys, 72:2 (2017), 335–374 | DOI | MR | Zbl

[3] Vinberg É. B., “Absence of crystallographic groups of reflections in Lobachevskii spaces of large dimension”, Tr. Mosk. Mat. Obs., 47, MSU, M., 1984, 68–102 | MR | Zbl

[4] Erokhovets N. Yu., “Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions”, Proc. Steklov Inst. Math., 305 (2019), 78–134 | DOI | MR | Zbl

[5] Matveev S. V., Fomenko A. T., “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | MR | Zbl

[6] C. K. Atkinson, “Volume estimates for equiangular hyperbolic Coxeter polyhedra”, Algebraic Geometric Topology, 9 (2009), 1225–1254 | DOI | MR | Zbl

[7] G. Brinkmann, S. Greenberg, C. Greenhill, B. D. McKay, R. Thomas, P. Wollan, “Generation of simple quadrangulations of the sphere”, Discrete Mathematics, 305 (2005), 33–54 | DOI | MR | Zbl

[8] H. S. M. Coxeter, Regular polytopes, 3rd edition, New York, 1973 | MR

[9] E. Chesebro, J. DeBlois, H. Wilton, “Some virtually special hyperbolic 3-manifold groups”, Comment. Math. Helv., 87 (2012), 727–787 | DOI | MR | Zbl

[10] G. Defour, “Notes on right-angled Coxeter polyhedra in hyperbolic spaces”, Geom. Dedicata, 147 (2009), 277–282 | DOI | MR

[11] E. Fominykh, S. Garoufalidis, M. Goerner, V. Tarkaev, A. Vesnin, “A census of tetrahedral hyperbolic manifolds”, Experimental Mathematics, 25:4 (2016), 466–481 | DOI | MR | Zbl

[12] D. Heard, E. Pervova, C. Petronio, “The 191 orientable octahedral manifolds”, Experimental Mathematics, 17 (2008), 473–486 | DOI | MR | Zbl

[13] M. Goerner, A census of hyperbolic Platonic manifolds and augmented knotted trivalent graphs, arXiv: 1602.02208v2 | MR

[14] T. Inoue, “Exploring the list of smallest right-angled hyperbolic polyhedra”, Experimental Mathematics (Published online April 11 2019) | DOI

[15] A. Kolpakov, “On the optimality of the ideal right-angled 24-cell”, Algebraic and Geometric Topology, 12 (2012), 1941–1960 | DOI | MR | Zbl

[16] J. Milnor, “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc., 6 (1982), 9–24 | DOI | MR | Zbl

[17] J. Nonaka, “The number of cusps of right-angled polyhedra in hyperbolic spaces”, Tokyo Journal of Math., 38:2 (2015), 539–560 | DOI | MR | Zbl

[18] Plantri, a computer software for generation of certain types of planar graphs, https://users.cecs.anu.edu.au/b̃dm/plantri/

[19] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, 1994 | MR | Zbl

[20] I. Rivin, “A characterization of ideal polyhedra in hyperbolic 3-space”, Ann. of Math. (2), 143:1 (1996), 51–70 | DOI | MR | Zbl

[21] P. Scott, “Subgroups of surface groups are almost geometric”, J. London Math. Soc. (2), 17:3 (1978), 555–565 | DOI | MR | Zbl

[22] SnapPea, a computer program for calculation hyperbolic structures on 3-manifolds, http://www.geometrygames.org/SnapPea/

[23] W. P. Thurston, The Geometry and Topology of 3-manifolds, Princeton University Notes, Princeton, New Jersey, 1980

[24] J. Weeks, Hyperbolic structures on 3-manifolds, Ph. D. Thesis, Princeton University, 1985 | MR