Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_2_a6, author = {A. Yu. Vesnin and A. A. Egorov}, title = {Ideal right-angled polyhedra in {Lobachevsky} space}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {65--83}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/} }
A. Yu. Vesnin; A. A. Egorov. Ideal right-angled polyhedra in Lobachevsky space. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 65-83. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a6/
[1] Andreev E. M., “On convex polyhedra of finite volume in Lobachevskii space”, Math. USSR-Sb., 12:2 (1970), 255–259 | DOI | MR | Zbl
[2] Vesnin A. Yu., “Right-angled polyhedra and hyperbolic 3-manifolds”, Russian Math. Surveys, 72:2 (2017), 335–374 | DOI | MR | Zbl
[3] Vinberg É. B., “Absence of crystallographic groups of reflections in Lobachevskii spaces of large dimension”, Tr. Mosk. Mat. Obs., 47, MSU, M., 1984, 68–102 | MR | Zbl
[4] Erokhovets N. Yu., “Three-Dimensional Right-Angled Polytopes of Finite Volume in the Lobachevsky Space: Combinatorics and Constructions”, Proc. Steklov Inst. Math., 305 (2019), 78–134 | DOI | MR | Zbl
[5] Matveev S. V., Fomenko A. T., “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | MR | Zbl
[6] C. K. Atkinson, “Volume estimates for equiangular hyperbolic Coxeter polyhedra”, Algebraic Geometric Topology, 9 (2009), 1225–1254 | DOI | MR | Zbl
[7] G. Brinkmann, S. Greenberg, C. Greenhill, B. D. McKay, R. Thomas, P. Wollan, “Generation of simple quadrangulations of the sphere”, Discrete Mathematics, 305 (2005), 33–54 | DOI | MR | Zbl
[8] H. S. M. Coxeter, Regular polytopes, 3rd edition, New York, 1973 | MR
[9] E. Chesebro, J. DeBlois, H. Wilton, “Some virtually special hyperbolic 3-manifold groups”, Comment. Math. Helv., 87 (2012), 727–787 | DOI | MR | Zbl
[10] G. Defour, “Notes on right-angled Coxeter polyhedra in hyperbolic spaces”, Geom. Dedicata, 147 (2009), 277–282 | DOI | MR
[11] E. Fominykh, S. Garoufalidis, M. Goerner, V. Tarkaev, A. Vesnin, “A census of tetrahedral hyperbolic manifolds”, Experimental Mathematics, 25:4 (2016), 466–481 | DOI | MR | Zbl
[12] D. Heard, E. Pervova, C. Petronio, “The 191 orientable octahedral manifolds”, Experimental Mathematics, 17 (2008), 473–486 | DOI | MR | Zbl
[13] M. Goerner, A census of hyperbolic Platonic manifolds and augmented knotted trivalent graphs, arXiv: 1602.02208v2 | MR
[14] T. Inoue, “Exploring the list of smallest right-angled hyperbolic polyhedra”, Experimental Mathematics (Published online April 11 2019) | DOI
[15] A. Kolpakov, “On the optimality of the ideal right-angled 24-cell”, Algebraic and Geometric Topology, 12 (2012), 1941–1960 | DOI | MR | Zbl
[16] J. Milnor, “Hyperbolic geometry: the first 150 years”, Bull. Amer. Math. Soc., 6 (1982), 9–24 | DOI | MR | Zbl
[17] J. Nonaka, “The number of cusps of right-angled polyhedra in hyperbolic spaces”, Tokyo Journal of Math., 38:2 (2015), 539–560 | DOI | MR | Zbl
[18] Plantri, a computer software for generation of certain types of planar graphs, https://users.cecs.anu.edu.au/b̃dm/plantri/
[19] J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag, 1994 | MR | Zbl
[20] I. Rivin, “A characterization of ideal polyhedra in hyperbolic 3-space”, Ann. of Math. (2), 143:1 (1996), 51–70 | DOI | MR | Zbl
[21] P. Scott, “Subgroups of surface groups are almost geometric”, J. London Math. Soc. (2), 17:3 (1978), 555–565 | DOI | MR | Zbl
[22] SnapPea, a computer program for calculation hyperbolic structures on 3-manifolds, http://www.geometrygames.org/SnapPea/
[23] W. P. Thurston, The Geometry and Topology of 3-manifolds, Princeton University Notes, Princeton, New Jersey, 1980
[24] J. Weeks, Hyperbolic structures on 3-manifolds, Ph. D. Thesis, Princeton University, 1985 | MR