PMP, (co)adjoint representation, and normal geodesics, of left-invariant (sub-)Finsler metric on Lie groups
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 43-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the ground of origins of the theory of Lie groups and Lie algebras, their (co)adjoint representations, and the Pontryagin maximum principle for the time-optimal problem are given an independent foundation for methods of geodesic vector field to search for normal geodesics of left-invariant (sub-)Finsler metrics on Lie groups and to look for the corresponding locally optimal controls in (sub-)Riemannian case, as well as some their applications.
Keywords: (co)adjoint representation, left-invariant (sub-)Finsler metric, left-invariant (sub-)Riemannian metric, Lie algebra, Lie group, mathematical pendulum, normal geodesic, optimal control.
@article{CHEB_2020_21_2_a5,
     author = {V. N. Berestovskii and I. A. Zubareva},
     title = {PMP, (co)adjoint representation, and normal geodesics, of left-invariant {(sub-)Finsler} metric on {Lie} groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {43--64},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a5/}
}
TY  - JOUR
AU  - V. N. Berestovskii
AU  - I. A. Zubareva
TI  - PMP, (co)adjoint representation, and normal geodesics, of left-invariant (sub-)Finsler metric on Lie groups
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 43
EP  - 64
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a5/
LA  - en
ID  - CHEB_2020_21_2_a5
ER  - 
%0 Journal Article
%A V. N. Berestovskii
%A I. A. Zubareva
%T PMP, (co)adjoint representation, and normal geodesics, of left-invariant (sub-)Finsler metric on Lie groups
%J Čebyševskij sbornik
%D 2020
%P 43-64
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a5/
%G en
%F CHEB_2020_21_2_a5
V. N. Berestovskii; I. A. Zubareva. PMP, (co)adjoint representation, and normal geodesics, of left-invariant (sub-)Finsler metric on Lie groups. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 43-64. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a5/

[1] Agrachev A.A., Sachkov Yu.L., Control theory from the geometric viewpoint, Encyclopedia of Mathematical Sciences, 87, Springer-Verlag, Berlin, 2004 | MR | Zbl

[2] Berestovskii V.N., “Submetries of space forms of nonnegative curvature”, Siber. Math. J., 28:4 (1987), 552–562 | DOI | MR

[3] Berestovskii V.N., “Homogeneous spaces with intrinsic metric”, Soviet Math. Dokl., 38:1 (1989), 60–63 | MR

[4] Berestovskii V.N., “Homogeneous manifolds with intrinsic metric. I”, Siber. Math. J., 29:6 (1988), 887–897 | DOI | MR

[5] Berestovskii V.N., “Homogeneous manifolds with intrinsic metric. II”, Siber. Math. J., 30:2 (1989), 180–191 | DOI | MR

[6] Berestovskii V.N., “Geodesics of a left-invariant nonholonomic Riemannian metric on the group of motions of the Euclidean plane”, Siberian Math. J., 35:6 (1994), 1083–1088 | DOI | MR

[7] Berestovskii V.N., “Geodesics of nonholonomic left-invariant inner metrics on the Heisenberg group and isoperimetrics of Minkowski plane”, Siber. Math. J., 35:1 (1994), 1–8 | DOI | MR

[8] Berestovskii V.N., “Universal methods of the search of normal geodesics on Lie groups with left-invariant sub-Riemannian metric”, Siberian Math. J., 55:5 (2014), 783–791 | DOI | MR

[9] Berestovskii V.N., Zubareva I.A., “Geodesics and shortest arcs of a special sub-Riemannian metric on the Lie group $SO(3)$”, Siberian Math. J., 56:4 (2015), 601–611 | DOI | MR | Zbl

[10] Berestovskii V.N., Zubareva I.A., “Sub-Riemannian distance in the Lie groups $SU(2)$ and $SO(3)$”, Siberian Adv. Math., 26:2 (2016), 77–89 | DOI | MR | MR | Zbl

[11] Beschastnyi I. Yu., Sachkov Yu. L., “Geodesics in the sub-Riemannian problem on the group $SO(3)$”, Sb. Math., 207:7, 915–941 | DOI | MR | Zbl

[12] Cohn-Vossen S., “Existenz Kürzester Wege”, Compositio Math., 3 (1936), 441–452 | MR

[13] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E. F., The mathematical theory of optimal processes, Interscience Publishers John Wiley Sons, Inc., New York–London, 1962 | MR | MR | Zbl

[14] Rashevsky P.K., “Any two points of a totally nonholonomic space may be connected by an admissible line”, Uch. Zap. Ped Inst. im. Liebknechta, 1938, no. 2, 83–94 (Russian)

[15] Bellaiche A., Risler J. (eds.), Sub-Riemannian geometry, Progress in Math., 144, Birkhäuser Verlag, Basel–Boston–Berlin, 1996 | MR

[16] Berestovskii V. N., “Curvatures of homogeneous sub-Riemannian manifolds”, European Journal of Mathematics, 3 (2017), 788–807 | DOI | MR | Zbl

[17] Berestovskii V. N., Gorbatsevich V. V., “Homogeneous spaces with inner metric and with integrable invariant distributions”, Analysis and Mathematical Physics, 4:4 (2014), 263–331 | DOI | MR | Zbl

[18] Berestovskii V. N., Guijarro L. A., “Metric Characterization of Riemannian Submersions”, Annals of Global Analysis and Geometry, 18 (2000), 577–588 | DOI | MR

[19] Butt Y. A., Sachkov Y. L., Bhatti A. I., “Extremal Trajectories and Maxwell Strata in Sub-Riemannian Problem on Group of Motions of Pseudo Euclidean Plane”, Journal of Dynamical and Control Systems, 20:3 (2014), 341–364 | DOI | MR | Zbl

[20] Chow W. L., “Über systeme von linearen partiellen differential gleichungen erster ordnung”, Math. Ann., 117 (1939), 98–105 | MR

[21] Golé C., Karidi R., “A note on Carnot geodesics in nilpotent Lie groups”, J. Dyn. Control Syst., 4:1 (1995), 535–549 | DOI | MR | Zbl

[22] Jurdjevich V., Geometric control theory, Cambridge Univ. Press, Cambridge, 1997 | MR

[23] Liu W., Sussman H. J., Shortest paths for sub-Riemannian metrics on rank-two-distributions, Memoirs of the Amer. Math. Soc., 118, no. 564, Amer. Math. Soc., Providence, 1995 | MR

[24] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21 (1976), 293–329 | DOI | MR | Zbl

[25] Moiseev R. S., Sachkov Yu. L., “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM: COCV, 16:2 (2010), 380–399 | DOI | MR | Zbl

[26] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, AMS, 2002 | MR | Zbl

[27] Sachkov Yu. L., “Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane”, ESAIM: COCV, 16:4 (2010), 1018–1039 | DOI | MR | Zbl