On the Mishchenko--Fomenko hypothesis for a generalized oscillator and Kepler system
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 383-402

Voir la notice de l'article provenant de la source Math-Net.Ru

Deformations of the Kepler problem and the harmonic oscillator are considered for which additional integrals of motion are the coordinates of the reduced divisor, according to the Riemann–Roch theorem. For this family of non-commutative integrable systems the validity of the Mishchenko–Fomenko hypothesis about the existence of integrals of motion from a single functional class, in this case polynomial integrals of motion, is discussed.
Keywords: superintegrable systems, noncommutative integrable systems, Mishchenko–Fomenko conjecture.
@article{CHEB_2020_21_2_a25,
     author = {A. V. Tsiganov},
     title = {On the {Mishchenko--Fomenko} hypothesis for a generalized oscillator and {Kepler} system},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {383--402},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a25/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On the Mishchenko--Fomenko hypothesis for a generalized oscillator and Kepler system
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 383
EP  - 402
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a25/
LA  - ru
ID  - CHEB_2020_21_2_a25
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On the Mishchenko--Fomenko hypothesis for a generalized oscillator and Kepler system
%J Čebyševskij sbornik
%D 2020
%P 383-402
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a25/
%G ru
%F CHEB_2020_21_2_a25
A. V. Tsiganov. On the Mishchenko--Fomenko hypothesis for a generalized oscillator and Kepler system. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 383-402. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a25/