Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_2_a25, author = {A. V. Tsiganov}, title = {On the {Mishchenko--Fomenko} hypothesis for a generalized oscillator and {Kepler} system}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {383--402}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a25/} }
A. V. Tsiganov. On the Mishchenko--Fomenko hypothesis for a generalized oscillator and Kepler system. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 383-402. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a25/
[1] Abel N. H., “Mémoire sure une propriété générale d'une classe très éntendue de fonctions transcendantes”, Oeuvres complétes, I, Grondahl Son, Christiania, 1881, 145–211
[2] Bogoyavlenskij O., “Extended integrability and bi-Hamiltonian systems”, Commun. Math. Phys., 196 (1998), 19–51 | DOI | MR | Zbl
[3] Bolsinov A. V., “Complete commutative families of polynomials in Poisson-Lie algebras: A proof of the Mischenko-Fomenko conjecture”, Tensor and Vector Analysis, 26, 2005, 87–109 | Zbl
[4] Bolsinov A. V., Jovanović B., “Noncommutative integrability, moment map and geodesic flows”, Annals of Global Analysis and Geometry, 23 (2003), 305–322 | DOI | MR | Zbl
[5] Euler L., “Probleme un corps étant attiré en raison réciproque quarrée des distances vers deux points fixes donnés, trouver les cas oú la courbe décrite par ce corps sera algébrique”, Mémoires de l'academie des sciences de Berlin, 16, 1767, 228–249
[6] Euler L., Institutionum calculi integralis, v. 1, Acta Petropolitana, 1761
[7] Jovanović B., “Noncommutative integrability and action-angle variables in contact geometry”, J. Symplectic Geom., 10:4 (2012), 535–561 | DOI | MR | Zbl
[8] H. Cohen, G. Frey (eds.), Handbook of Elliptic and Hyperelliptic Curve Cryptography, Chapman and Hall/CRC, 2006 | Zbl
[9] Hurtubise J. C., Kjiri M., “Separating coordinates for the generalized Hitchin systems and the classical r-matrices”, Commun. Math. Phys., 210 (2000), 521–540 | DOI | MR | Zbl
[10] Fassó F., Ratiu T., “Compatibility of symplectic structures adapted to noncommutatively integrable systems”, J. Geom. Phys., 27 (1998), 199–220 | DOI | MR | Zbl
[11] Fassó F., “Superintegrable Hamiltonian systems: geometry and applications”, Acta Appl. Math., 87 (2005), 93–121 | DOI | MR | Zbl
[12] Fiorani E., Sardanashvily G., “Noncommutative integrability on noncompact invariant manifolds”, J. Phys. A: Math. and Gen., 39:45 (2006), 14035–14042 | DOI | MR | Zbl
[13] Grigoriev Yu. A., Tsiganov A. V., “On superintegrable systems separable in Cartesian coordinates”, Phys. Lett. A, 382:32 (2018), 2092–2096 | DOI | MR | Zbl
[14] Lagrange J. L., Mécanique analytique, v. 2, {ØE}uvres complètes, 12, 1789 | MR
[15] Lang S., Elliptic Curves: Diophantine Analysis, Series of Comprehensive Studies in Math., 231, Springer-Verlag, 1978 | MR | Zbl
[16] Mumford D., Tata Lectures on Theta, v. II, Birkhäuser, 1984 | MR | Zbl
[17] Mishchenko A. S., Fomenko A. T., “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | MR | Zbl
[18] Мищенко А. С., Фоменко А. Т., “Обобщённый метод Лиувилля интегрирования гамильтоновых систем”, Функц. анализ и его прил., 12:2 (1978), 46–56 | DOI | MR | Zbl
[19] Onofri E., Pauri M., “Search for periodic hamiltonian flows: A generalized Bertrand's theorem”, J. Math. Phys., 19:9 (1978), 1850–1858 | DOI | MR | Zbl
[20] Sadetov S. T., “A proof of the Mishchenko-Fomenko conjecture”, Dokl. Akad. Nauk, 397:6 (2004), 751–754 | MR | Zbl
[21] Silverman J. H., The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 2009 | MR | Zbl
[22] Stäckel P., Über die Integration der Hamilton–Jacobischen Differential Gleichung Mittelst Separation der Variabeln, Habilitationsschrift, Halle, 1891, 26 pp.
[23] Trofimov V. V., Fomenko A. T., Algebra and Geometry of the Integrable Hamiltonian Differential Equations, Factorial, M., 1995
[24] Tsiganov A. V., “The Stäckel systems and algebraic curves”, J. Math. Phys., 40 (1999), 279–298 | DOI | MR | Zbl
[25] Tsiganov A. V., “The Drach superintegrable systems”, J. Phys. A: Math. Gen., 33:41 (2000), 7407–7422 | DOI | MR | Zbl
[26] Tsiganov A. V., “On maximally superintegrable systems”, Reg. Chaot. Dyn., 13:3 (2008), 178–190 | DOI | MR | Zbl
[27] Tsiganov A. V., “Addition theorems and the Drach superintegrable systems”, J. Phys. A: Math. Theor., 41 (2008), 335204 | DOI | MR | Zbl
[28] Tsiganov A. V., “Leonard Euler: addition theorems and superintegrable systems”, Reg. Chaot. Dyn., 14:3 (2009), 389–406 | DOI | MR | Zbl
[29] Tsiganov A. V., “On the superintegrable Richelot systems”, J. Phys. A: Math. Theor., 43 (2010), 055201 | DOI | MR | Zbl
[30] Tsiganov A. V., “Transformation of the Stäckel matrices preserving superintegrability”, J. Math. Phys., 60 (2019), 042701 | DOI | MR | Zbl
[31] Tsiganov A. V., “Elliptic curve arithmetic and superintegrable systems”, Phys. Scripta, 94 (2019), 085207 | DOI
[32] Tsiganov A. V., “Superintegrable systems with algebraic and rational integrals of motion”, Theoret. and Math. Phys., 199:2 (2019), 659–674 | DOI | MR | Zbl
[33] Tsiganov A. V., Discretization and superintegrability all rolled into one, 2019, arXiv: 1902.03884 | MR
[34] Tsiganov A. V., “The Kepler problem: polynomial algebra of non-polynomial first integrals”, Regul. Chaotic Dyn., 24 (2019), 353–369 | DOI | MR | Zbl