Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_2_a24, author = {H\^ong V\^an L\^e and J. Van\v{z}ura}, title = {Classification of $k$-forms on $\mathbb{R}^n$ and the existence of associated geometry on manifolds}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {362--382}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a24/} }
TY - JOUR AU - Hông Vân Lê AU - J. Vanžura TI - Classification of $k$-forms on $\mathbb{R}^n$ and the existence of associated geometry on manifolds JO - Čebyševskij sbornik PY - 2020 SP - 362 EP - 382 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a24/ LA - en ID - CHEB_2020_21_2_a24 ER -
Hông Vân Lê; J. Vanžura. Classification of $k$-forms on $\mathbb{R}^n$ and the existence of associated geometry on manifolds. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 362-382. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a24/