On traveling waves in systems of absolutely elastic particles on a straight line
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 341-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of an infinite number of absolutely elastic particles on a straight line, the masses and initial distances between which are periodically repeated. We study the conditions under which solutions such as traveling waves can exist in such systems.
Keywords: absolutely elastic blow, traveling wave, billiards.
@article{CHEB_2020_21_2_a23,
     author = {S. M. Saulin},
     title = {On traveling waves in systems of absolutely elastic particles on a straight line},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {341--361},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a23/}
}
TY  - JOUR
AU  - S. M. Saulin
TI  - On traveling waves in systems of absolutely elastic particles on a straight line
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 341
EP  - 361
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a23/
LA  - ru
ID  - CHEB_2020_21_2_a23
ER  - 
%0 Journal Article
%A S. M. Saulin
%T On traveling waves in systems of absolutely elastic particles on a straight line
%J Čebyševskij sbornik
%D 2020
%P 341-361
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a23/
%G ru
%F CHEB_2020_21_2_a23
S. M. Saulin. On traveling waves in systems of absolutely elastic particles on a straight line. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 341-361. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a23/

[1] Friesecke G., Wattis J., “Existence theorem for solitary waves on lattices”, Commun. Math. Phys., 161 (1994), 391–418 | DOI | MR | Zbl

[2] Friesecke G., Matthies K., “Atomic-scale localization of high-energy solitary waves on lattices”, Physica D, 171 (2002), 211–220 | DOI | MR | Zbl

[3] É. B. Vinberg, “Kaleidoscopes and reflection groups”, Mat. Prosveshchenie, 7, MCCME, M., 2003, 45–63

[4] G. A. Galperin, “Elastic collisions of particles on a line”, Russian Math. Surveys, 33:1 (1978), 199–200 | DOI | MR | Zbl | Zbl

[5] G. A. Galperin, “Systems of locally interacting and repelling particles that are moving in space”, Tr. Mosk. Mat. Obs., 43, MSU, M., 1981, 142–196

[6] G. A. Galperin, “Billiards and elastic collisions of particles and balls”, Mat. Pros., Ser. 3, 5, MCCME, M., 2001, 65–99

[7] G. A. Galperin, A. N. Zemlyakov, Mathematical billiards, Nauka, M., 1990, 228 pp. | MR

[8] Herrmann M., Matthies K., Uniqueness of solitary waves in the high-energy limit of FPU-type chains, arXiv: 1611.03514v1 | MR

[9] Iooss G., “Travelling waves in the Fermi-Pasta-Ulam lattice”, Nonlinearity, 13 (2000), 849–866 | DOI | MR | Zbl

[10] Iooss G., Kirchgässner K., “Travelling waves in a chain of coupled nonlinear oscillators”, Comm. Math. Phys., 2000, 439–464 | DOI | MR | Zbl

[11] V. V. Kozlov, D. V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts, Translations of Mathematical Monographs, 89, Amer. Math. Soc., Providence, RI, 1991 | DOI | MR | MR | Zbl

[12] Pankov A., Travelling waves and periodic oscillations in Fermi-Pasta-Ulam lattices, The Imperial College Press, London, 2005, 194 pp. | MR

[13] Ya. G. Sinai, “Billiard trajectories in a polyhedral angle”, Russian Math. Surveys, 33:1 (1978), 219–220 | DOI | MR | Zbl | Zbl

[14] M. B. Sevryuk, “Estimate of the number of collisions of $n$ elastic particles on a line”, Theoret. and Math. Phys., 96:1 (1993), 818–826 | DOI | MR | Zbl

[15] Treschev D., “Travelling waves in FPU lattices”, Discrete Contin. Dyn. Syst., 11:4 (2004), 867–880 | DOI | MR | Zbl