Integrable systems in planar robotics
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 320-340

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to investigate commuting flows and integrable systems on the configuration spaces of planar linkages. Our study leads to the definition of a natural volume form on each configuration space of planar linkages, the notion of cross products of integrable systems, and also the notion of multi-Nambu integrable systems. The first integrals of our systems are functions of Bott-Morse type, which may be used to study the topology of configuration spaces.
Keywords: planar linkage, commuting flows, non-Hamiltonian integrability, volume form, Nambu structure, cross-product of integrable systems.
@article{CHEB_2020_21_2_a22,
     author = {T. S. Ratiu and Nguyen Tien Zung},
     title = {Integrable systems in planar robotics},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {320--340},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a22/}
}
TY  - JOUR
AU  - T. S. Ratiu
AU  - Nguyen Tien Zung
TI  - Integrable systems in planar robotics
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 320
EP  - 340
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a22/
LA  - en
ID  - CHEB_2020_21_2_a22
ER  - 
%0 Journal Article
%A T. S. Ratiu
%A Nguyen Tien Zung
%T Integrable systems in planar robotics
%J Čebyševskij sbornik
%D 2020
%P 320-340
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a22/
%G en
%F CHEB_2020_21_2_a22
T. S. Ratiu; Nguyen Tien Zung. Integrable systems in planar robotics. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 320-340. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a22/