Integrable systems in planar robotics
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 320-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to investigate commuting flows and integrable systems on the configuration spaces of planar linkages. Our study leads to the definition of a natural volume form on each configuration space of planar linkages, the notion of cross products of integrable systems, and also the notion of multi-Nambu integrable systems. The first integrals of our systems are functions of Bott-Morse type, which may be used to study the topology of configuration spaces.
Keywords: planar linkage, commuting flows, non-Hamiltonian integrability, volume form, Nambu structure, cross-product of integrable systems.
@article{CHEB_2020_21_2_a22,
     author = {T. S. Ratiu and Nguyen Tien Zung},
     title = {Integrable systems in planar robotics},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {320--340},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a22/}
}
TY  - JOUR
AU  - T. S. Ratiu
AU  - Nguyen Tien Zung
TI  - Integrable systems in planar robotics
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 320
EP  - 340
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a22/
LA  - en
ID  - CHEB_2020_21_2_a22
ER  - 
%0 Journal Article
%A T. S. Ratiu
%A Nguyen Tien Zung
%T Integrable systems in planar robotics
%J Čebyševskij sbornik
%D 2020
%P 320-340
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a22/
%G en
%F CHEB_2020_21_2_a22
T. S. Ratiu; Nguyen Tien Zung. Integrable systems in planar robotics. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 320-340. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a22/

[1] O.I. Bogoyavlenskij, “A concept of integrability of dynamical systems”, C. R. Math. Rep. Acad. Sci. Canada, 18 (1996), 163–168 | MR | Zbl

[2] O.I. Bogoyavlenskij, “Extended integrability and bi-hamiltonian systems”, Comm. Math. Phys., 196:1 (1998), 19–51 | DOI | MR | Zbl

[3] D. Bouloc, “Singular fibers of the bending flows on the moduli space of 3D polygons”, Journal of Symplectic Geometry, 16:3 (2018), 585–629 | DOI | MR | Zbl

[4] J.-P. Dufour, N.T Zung, Poisson Structures and Their Normal Forms, Progress in Mathematics, 242, Birkhäuser, 2015 | MR

[5] M. Farber, An Invitation to Topological Robotics, Zürich Lectures in Advanced Mathematics, European Mathematical Society Publishing House, 2008 | MR

[6] M. Farber, D. Schütz, “Homology of planar polygon spaces”, Geom. Dedicata, 125 (2007), 75–92 | DOI | MR | Zbl

[7] Fomenko A.T., “Symplectic topology of completely integrable Hamiltonian systems"”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | MR | Zbl

[8] C.G. Gibson, J.M. Selig, “Movable hinged spherical quadrilaterals. I: Über sphärische Gelenkenvierecke: the configuraion space”, Mechanism and Machine Theory, 23:1 (1988), 13–18 ; “Movable hinged spherical quadrilaterals. II: Singularities and reduction”, 19–24 | DOI

[9] C.G. Gibson, D. Marsh, “On the linkage varieties of Watt 6-bar mechanisms. I: Basic geometry”, Mechanism and Machine Theory, 24 (1989), 106–113; “On the linkage varieties of Watt 6-bar mechanisms. II: The possible reductions”, 115–121; “On the linkage varieties of Watt 6-bar mechanisms. III: Topology of the real varieties”, 123–126

[10] J.-C. Hausmann, A. Knutson, “Polygon spaces and Grassmannians”, Enseign. Math. (2), 43:1–2 (1997), 173–198 | MR | Zbl

[11] J.-C. Hausmann, A. Knutson, “Cohomology rings of polygon spaces”, Ann. Inst. Fourier (Grenoble), 48 (1988), 281–321 | DOI | MR

[12] D. Jordan, M. Steiner, “Configuration spaces of mechanical linkages”, Discrete Comput. Geom., 22 (1999), 297–315 | DOI | MR | Zbl

[13] Y. Kamiyama, S. Tsukuda, “The Euler characteristic of the configuration space of planar spidery linkages”, Algebr. Geom. Topol., 14:6 (2014), 3659–3688 | DOI | MR | Zbl

[14] M. Kapovich, J. Millson, “On the moduli space of polygons in the Euclidean plane”, J. Diff. Geom., 42:2 (1995), 430–464 | DOI | MR | Zbl

[15] M. Kapovich, J. Millson, “The symplectic geometry of polygons in Euclidean space”, J. Diff. Geom., 44:3 (1996), 479–513 | DOI | MR | Zbl

[16] M. Kapovich, J. Millson, “Universality theorems for configuration spaces of planar linkages”, Topology, 41 (2002), 1051–1107 | DOI | MR | Zbl

[17] A.B. Kempe, “On a general method of describing plane curves of the $n$th degree by linkwork”, Proc. London Math. Soc. VII, 102 (1876), 213–216 | MR

[18] J.M. McCarthy, G.S. Soh, Geometric Design of Linkages, second edition, Springer, 2011 | MR | Zbl

[19] A. Klyachko, “Spatial polygons and stable configurations of points on the projective line”, Algebraic Geometry and Its Applications, Proceedings of the 8th Algebraic Geometry Conference (Yaroslavl', 1992), eds. A. Tikhomirov, A. Tyurin, Vieweg, Braunschweig, 1994, 67–84 | DOI | MR | Zbl

[20] T.H. Minh, N.T. Zung, “Commuting foliations”, Regular and Chaotic Dynamics, 18:6 (2013), 608–622 | DOI | MR | Zbl

[21] N.V. Minh, N.T. Zung, “Geometry of nondegenerate $\mathbb{R}^n$-actions on $n$-manifolds”, J. Math. Soc. Japan, 66:3 (2014), 839–894 | DOI | MR | Zbl

[22] Y. Nambu, “Generalized Hamiltonian dynamics”, Phys. Rev. D, 7:8 (1973), 5405–5412 | DOI | MR

[23] B. Servatius, O. Shai, W. Whiteley, “Combinatorial characterization of the Assur graphs from engineering”, European J. Combin., 31:4 (2010), 1091–1104 | DOI | MR | Zbl

[24] W. Thurston, Shapes of polyhedra, Preprint, 1987 | Zbl

[25] F. Waldhausen, “Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I; II”, Inventiones Mathematicae, 3:4, 308–333 ; 4:2 (1967), 87–117 | DOI | MR | Zbl | DOI

[26] J. Zhao, Z. Feng, N. Ma, F. Chu, Design of special planar linkages, Springer Tracks in Mechanical Engineering, 2014 | DOI

[27] N.T. Zung, “Geometry of integrable non-Hamiltonian systems”, Geometry and Dynamics of Integrable Systems, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser/Springer, 2016, 85–140 | DOI | MR | Zbl

[28] N.T. Zung, “A conceptual approach to the problem of action-angle variables”, Arch. Rat. Mech. Anal., 229:2 (2018), 789–833 | DOI | MR | Zbl