Recognition and tabulation of $3$-manifolds up to complexity~$13$
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 290-300

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe in breaf the complete table of closed irreducible orientable $3$-manifolds of complexity $\le 13$, and method of its creation and verification. Also we formulate a conjectures concerning the growth of the number of some kinds of manifolds. The appendix contains a short explanation of used terminology.
Keywords: three-dimensional manifolds, complexity of manifold, special spines, tabulation of three-dimensional manifolds.
@article{CHEB_2020_21_2_a20,
     author = {S. V. Matveev and V. V. Tarkaev},
     title = {Recognition and tabulation of $3$-manifolds up to complexity~$13$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {290--300},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a20/}
}
TY  - JOUR
AU  - S. V. Matveev
AU  - V. V. Tarkaev
TI  - Recognition and tabulation of $3$-manifolds up to complexity~$13$
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 290
EP  - 300
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a20/
LA  - en
ID  - CHEB_2020_21_2_a20
ER  - 
%0 Journal Article
%A S. V. Matveev
%A V. V. Tarkaev
%T Recognition and tabulation of $3$-manifolds up to complexity~$13$
%J Čebyševskij sbornik
%D 2020
%P 290-300
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a20/
%G en
%F CHEB_2020_21_2_a20
S. V. Matveev; V. V. Tarkaev. Recognition and tabulation of $3$-manifolds up to complexity~$13$. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 290-300. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a20/