Recognition and tabulation of $3$-manifolds up to complexity~$13$
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 290-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe in breaf the complete table of closed irreducible orientable $3$-manifolds of complexity $\le 13$, and method of its creation and verification. Also we formulate a conjectures concerning the growth of the number of some kinds of manifolds. The appendix contains a short explanation of used terminology.
Keywords: three-dimensional manifolds, complexity of manifold, special spines, tabulation of three-dimensional manifolds.
@article{CHEB_2020_21_2_a20,
     author = {S. V. Matveev and V. V. Tarkaev},
     title = {Recognition and tabulation of $3$-manifolds up to complexity~$13$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {290--300},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a20/}
}
TY  - JOUR
AU  - S. V. Matveev
AU  - V. V. Tarkaev
TI  - Recognition and tabulation of $3$-manifolds up to complexity~$13$
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 290
EP  - 300
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a20/
LA  - en
ID  - CHEB_2020_21_2_a20
ER  - 
%0 Journal Article
%A S. V. Matveev
%A V. V. Tarkaev
%T Recognition and tabulation of $3$-manifolds up to complexity~$13$
%J Čebyševskij sbornik
%D 2020
%P 290-300
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a20/
%G en
%F CHEB_2020_21_2_a20
S. V. Matveev; V. V. Tarkaev. Recognition and tabulation of $3$-manifolds up to complexity~$13$. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 290-300. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a20/

[1] Amendola G., Martelli B., “Non-orientable 3-manifolds of complexity up to 7”, Topology Appl., 150 (2005), 179–195 | DOI | MR | Zbl

[2] Dunfield N. M., Thurston W. P., “Finite covers of random 3-manifolds”, Invent. Math., 166:3 (2006), 457–521 | DOI | MR | Zbl

[3] Gabai D., Meyerhoff R., Milley P., “Minimum volume cusped hyperbolic 3-manifolds”, J. Amer. Math. Soc., 22:4 (2009), 1157–1215 | DOI | MR | Zbl

[4] Gabai D., Meyerhoff R., Milley P., “Mom technology and volumes of hyperbolic 3-manifolds”, Comment. Math. Helv., 86 (2011), 145–188 | DOI | MR | Zbl

[5] Haken W., “Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I”, Math. Z., 80 (1962), 89–120 (German) | DOI | MR | Zbl

[6] Hemion G., “On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds”, Acta Math., 142 (1979), 123–155 | DOI | MR | Zbl

[7] Ito T., “On a structure of random open books and closed braids”, Proc. Japan Acad. Ser. A Math. Sci., 91 (2015), 160–162 | DOI | MR | Zbl

[8] Johannson K., “Topologie und Geometrie von 3-Mannigfaltigkeiten”, Jahresber. Deutsch. Math.-Verein., 86:2 (1984), 37–68 | MR | Zbl

[9] Malyutin A. V., “On the Question of Genericity of Hyperbolic Knots”, IMRN (to appear) | DOI

[10] Martelli B., Petronio C., “Three-manifolds having complexity at most 9”, Experiment. Math., 10:2 (2001), 207–236 | DOI | MR | Zbl

[11] Matveev S. V., Savvateev V. V., “Three-dimensional manifolds having simple special spines”, Colloq. Math., 32 (1974), 83–97 | DOI | MR | Zbl

[12] Matveev S. V., Fomenko A. T., “Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds”, Russian Math. Surveys, 43:1 (1988), 3–24 | DOI | MR | Zbl

[13] M. Tsaplina, M. Hazewinkel (transl.), revised by the authors, Mathematics and its Applications, 425, Kluwer Academic Publishers, Dordrecht, 1997 | MR | MR | Zbl

[14] Sb. Math., 186:5 (1995), 695–710 | DOI | MR | Zbl

[15] Matveev S. V., Pervova E. L., “Lower bounds for the complexity of three-dimensional manifolds”, Dokl. Akad. Nauk, 378:2 (2001), 151–152 (Russian) | MR | Zbl

[16] Matveev S. V., “Tabulation of three-dimensional manifolds”, Russian Mathematical Surveys, 60 (2005), 673–698 | DOI | MR | Zbl

[17] Matveev S. V., Algorithmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics, 9, Springer-Verlag, Berlin, 2003, xii+478 pp. | DOI | MR | Zbl

[18] Mostow G. D., Strong rigidity of locally symmetric spaces, Ann. Math. Studies, 78, Princeton Univ. Press, Princeton, N.J., 1973 | MR | Zbl

[19] Sbrodova E.A., Tarkaev V.V., Fominykh E.A., Shumakova E.V., “Virtual 3-Manifolds of Complexity 1 and 2”, Proceedings of the Steklov Institute of Mathematics, 304, Suppl. 1 (2019), 154–160 | DOI | MR

[20] Thompson A., “Thin position and the recognition problem for $S^3$”, Math. Res. Lett., 1:5 (1994), 613–630 | DOI | MR | Zbl

[21] Thurston W., “Three dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc., 6 (1982), 357–381 | DOI | MR

[22] Thurston W.P., The geometry and topology of three-manifolds, Princeton Math. Dept., 1979 | MR

[23] Turaev V. G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter Co., Berlin, 1994 | MR | Zbl

[24] Vesnin A. Yu., Matveev S. V., Fominykh E. A., “Complexity of three-dimensional manifolds: exact values and estimates”, Sib. Elektron. Mat. Izv., 8 (2011), 341–364 (Russian) (English summary) | MR | Zbl

[25] Russian Math. Surveys, 73:4 (2018), 615–660 | DOI | DOI | MR | Zbl

[26] Waldhausen F., “Recent results on sufficiently large 3-manifolds”, Algebraic and geometric topology (Stanford Univ., Stanford, Calif., 1976), v. 2, Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, 21–38 | DOI | MR