Liouville classification of integrable geodesic flows on a projective plane in a potential field
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 10-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Liouville classification of a natural Hamiltonian system on the projective plane with a rotation metric and a linear integral is obtained. All Fomenko–Zieschang invariants (i. e., labeled molecules) of the system are calculated.
Keywords: integrable Hamiltonian systems, geodesic flow, labeled molecule, Fomenko–Zieschang invariant.
@article{CHEB_2020_21_2_a2,
     author = {E. I. Antonov and I. K. Kozlov},
     title = {Liouville classification of integrable geodesic flows on a projective plane in a potential field},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {10--25},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/}
}
TY  - JOUR
AU  - E. I. Antonov
AU  - I. K. Kozlov
TI  - Liouville classification of integrable geodesic flows on a projective plane in a potential field
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 10
EP  - 25
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/
LA  - ru
ID  - CHEB_2020_21_2_a2
ER  - 
%0 Journal Article
%A E. I. Antonov
%A I. K. Kozlov
%T Liouville classification of integrable geodesic flows on a projective plane in a potential field
%J Čebyševskij sbornik
%D 2020
%P 10-25
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/
%G ru
%F CHEB_2020_21_2_a2
E. I. Antonov; I. K. Kozlov. Liouville classification of integrable geodesic flows on a projective plane in a potential field. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 10-25. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/

[1] Besse A. L., Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978, ix+262 pp. | MR | Zbl

[2] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999, 444 pp.; т. 2, 447 с.; Bolsinov A. V., Fomenko A. T., Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | Zbl

[3] Kantonistova E. O., “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399 | DOI | MR | Zbl

[4] Timonina D. S., “Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle”, Sb. Math., 209:11 (2018), 1644–1676 | DOI | MR | Zbl

[5] Fomenko A. T., “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[6] Fomenko A. T., “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl

[7] Fomenko A. T., Zieschang H., “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 520–534 | MR | Zbl

[8] Fomenko A. T., “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl

[9] Geiges H., Lange C., Seifert fibrations of lens spaces, arXiv: 1608.06844 [math.GT] | MR