Liouville classification of integrable geodesic flows on a projective plane in a potential field
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 10-25

Voir la notice de l'article provenant de la source Math-Net.Ru

A Liouville classification of a natural Hamiltonian system on the projective plane with a rotation metric and a linear integral is obtained. All Fomenko–Zieschang invariants (i. e., labeled molecules) of the system are calculated.
Keywords: integrable Hamiltonian systems, geodesic flow, labeled molecule, Fomenko–Zieschang invariant.
@article{CHEB_2020_21_2_a2,
     author = {E. I. Antonov and I. K. Kozlov},
     title = {Liouville classification of integrable geodesic flows on a projective plane in a potential field},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {10--25},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/}
}
TY  - JOUR
AU  - E. I. Antonov
AU  - I. K. Kozlov
TI  - Liouville classification of integrable geodesic flows on a projective plane in a potential field
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 10
EP  - 25
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/
LA  - ru
ID  - CHEB_2020_21_2_a2
ER  - 
%0 Journal Article
%A E. I. Antonov
%A I. K. Kozlov
%T Liouville classification of integrable geodesic flows on a projective plane in a potential field
%J Čebyševskij sbornik
%D 2020
%P 10-25
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/
%G ru
%F CHEB_2020_21_2_a2
E. I. Antonov; I. K. Kozlov. Liouville classification of integrable geodesic flows on a projective plane in a potential field. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 10-25. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/