Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_2_a2, author = {E. I. Antonov and I. K. Kozlov}, title = {Liouville classification of integrable geodesic flows on a projective plane in a potential field}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {10--25}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/} }
TY - JOUR AU - E. I. Antonov AU - I. K. Kozlov TI - Liouville classification of integrable geodesic flows on a projective plane in a potential field JO - Čebyševskij sbornik PY - 2020 SP - 10 EP - 25 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/ LA - ru ID - CHEB_2020_21_2_a2 ER -
E. I. Antonov; I. K. Kozlov. Liouville classification of integrable geodesic flows on a projective plane in a potential field. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 10-25. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/
[1] Besse A. L., Manifolds all of whose geodesics are closed, Ergeb. Math. Grenzgeb., 93, Springer-Verlag, Berlin–New York, 1978, ix+262 pp. | MR | Zbl
[2] Bolsinov A. V., Fomenko A. T., Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999, 444 pp.; т. 2, 447 с.; Bolsinov A. V., Fomenko A. T., Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | MR | Zbl
[3] Kantonistova E. O., “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399 | DOI | MR | Zbl
[4] Timonina D. S., “Liouville classification of integrable geodesic flows in a potential field on two-dimensional manifolds of revolution: the torus and the Klein bottle”, Sb. Math., 209:11 (2018), 1644–1676 | DOI | MR | Zbl
[5] Fomenko A. T., “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[6] Fomenko A. T., “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl
[7] Fomenko A. T., Zieschang H., “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 520–534 | MR | Zbl
[8] Fomenko A. T., “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[9] Geiges H., Lange C., Seifert fibrations of lens spaces, arXiv: 1608.06844 [math.GT] | MR