Liouville classification of integrable geodesic flows on a projective plane in a potential field
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 10-25
Voir la notice de l'article provenant de la source Math-Net.Ru
A Liouville classification of a natural Hamiltonian system on the projective plane with a rotation metric and a linear integral is obtained. All Fomenko–Zieschang invariants (i. e., labeled molecules) of the system are calculated.
Keywords:
integrable Hamiltonian systems, geodesic flow, labeled molecule, Fomenko–Zieschang invariant.
@article{CHEB_2020_21_2_a2,
author = {E. I. Antonov and I. K. Kozlov},
title = {Liouville classification of integrable geodesic flows on a projective plane in a potential field},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {10--25},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/}
}
TY - JOUR AU - E. I. Antonov AU - I. K. Kozlov TI - Liouville classification of integrable geodesic flows on a projective plane in a potential field JO - Čebyševskij sbornik PY - 2020 SP - 10 EP - 25 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/ LA - ru ID - CHEB_2020_21_2_a2 ER -
E. I. Antonov; I. K. Kozlov. Liouville classification of integrable geodesic flows on a projective plane in a potential field. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 10-25. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a2/