About new examples of Serre curves
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 266-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

Abel's theorem claims that the Lemniscate can be divided into $n$ equal arcs by ruler and compass iff $n=2^kp_1\ldots p_m$, where $p_j$ are pairwise distinct Fermat primes. The proof is based on the fact that the lemniscate can be parametrised by rational functions and the arc length is a first type elliptic integral of the parameter. Joseph Alfred Serret proposed a method to describe all such curves in [1]. In papers [1, 2, 3] he found series of such curves and described its important properties. Since then no new examples of curves with rational parametrisation such that arc length is a first type elliptic integral of the parameter are known. In this note we describe new example of such a curve.
Keywords: Serret curve, elliptic integral, algebraic curve.
@article{CHEB_2020_21_2_a18,
     author = {A. T. Lipkovski and F. Yu. Popelensky},
     title = {About new examples of {Serre} curves},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {266--274},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a18/}
}
TY  - JOUR
AU  - A. T. Lipkovski
AU  - F. Yu. Popelensky
TI  - About new examples of Serre curves
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 266
EP  - 274
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a18/
LA  - ru
ID  - CHEB_2020_21_2_a18
ER  - 
%0 Journal Article
%A A. T. Lipkovski
%A F. Yu. Popelensky
%T About new examples of Serre curves
%J Čebyševskij sbornik
%D 2020
%P 266-274
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a18/
%G ru
%F CHEB_2020_21_2_a18
A. T. Lipkovski; F. Yu. Popelensky. About new examples of Serre curves. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 266-274. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a18/

[1] J. A. Serret, “Mémoire sur la représentation géométrique des fonctions elliptiques and ultra-elliptiques”, Journal de mathématiques pures et appliquées, 10 (1845), 257–285

[2] J. A. Serret, “Développements sur une classe d'équations relatives a la représentation géométrique des fonctions elliptiques”, Journal de mathématiques pures et appliquées, 10 (1845), 351–363

[3] J. A. Serret, “Note sur les courbes elliptiques de la première espèce”, Journal de mathématiques pures et appliquées, 10 (1845), 421–429

[4] J. Liouville, “Sur un Mémoire de M. Serret, relatif à la representation des fonctions elliptiques”, Journal de mathématiques pures et appliquées, 10 (1845), 456–465

[5] Prasolov V. V., Soloviev Y. P., Elliptic Functions and Algebraic Equations, M., 2020