Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_2_a17, author = {E. A. Kudryavtseva and A. A. Oshemkov}, title = {Bifurcations of integrable mechanical systems with magnetic field on surfaces of revolution}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {244--265}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a17/} }
TY - JOUR AU - E. A. Kudryavtseva AU - A. A. Oshemkov TI - Bifurcations of integrable mechanical systems with magnetic field on surfaces of revolution JO - Čebyševskij sbornik PY - 2020 SP - 244 EP - 265 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a17/ LA - ru ID - CHEB_2020_21_2_a17 ER -
%0 Journal Article %A E. A. Kudryavtseva %A A. A. Oshemkov %T Bifurcations of integrable mechanical systems with magnetic field on surfaces of revolution %J Čebyševskij sbornik %D 2020 %P 244-265 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a17/ %G ru %F CHEB_2020_21_2_a17
E. A. Kudryavtseva; A. A. Oshemkov. Bifurcations of integrable mechanical systems with magnetic field on surfaces of revolution. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 244-265. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a17/
[1] Besse A. L., Manifolds all of whose Geodesics are Closed, Springer, Berlin, 1988 | MR
[2] Kantonistova E. O., “Topological classification of integrable Hamiltonian systems in a potential field on surfaces of revolution”, Sb. Math., 207:3 (2016), 358–399 | DOI | MR | Zbl
[3] Kozlov I., Oshemkov A., “Integrable systems with linear periodic integral for the Lie algebra $e(3)$”, Lobachevskii J. Math., 38:6 (2017), 1014–1026 | DOI | MR | Zbl
[4] Van der Meer J.-C., The Hamiltonian Hopf bifurcation, Lecture Notes in Mathematics, 1160, Springer-Verlag, Berlin, 1985 | MR | Zbl
[5] Efstathiou K., Giacobbe A., “The topology associated with cusp singular points”, Nonlinearity, 25 (2012), 3409–3422 | DOI | MR | Zbl
[6] Fomenko A.T., “Topological invariants of Liouville integrable Hamiltonian systems”, Funct. Anal. Appl., 22:4 (1988), 286–296 | DOI | MR | Zbl
[7] Bolsinov A., Guglielmi L., Kudryavtseva E., “Symplectic invariants for parabolic orbits and cusp singularities of integrable systems”, Philos. Trans. A Math. Phys. Eng. Sci., 376:2131 (2018), 20170424 | DOI | MR | Zbl
[8] Kudryavtseva E. A., Lakshtanov E. L., “Classification of singularities and bifurcations of critical points of even functions”, Topological Methods in the Theory of Integrable Systems, eds. Bolsinov A. V., Fomenko A. T., Oshemkov A. A., Cambridge Scientific Publishers, Cambridge, 2006, 173–214 | MR
[9] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl
[10] Bolsinov A. V., Fomenko A. T., Integrable Hamiltonian systems: geometry, topology, classification, Chapman Hall / CRC, Boca Raton–London–N.Y.–Washington, 2004 | MR | Zbl