Generalized chessboard complexes and discrete Morse theory
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 207-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

Chessboard complexes and their generalizations, as objects, and Discrete Morse theory, as a tool, are presented as a unifying theme linking different areas of geometry, topology, algebra and combinatorics. Edmonds and Fulkerson bottleneck (minmax) theorem is proved and interpreted as a result about a critical point of a discrete Morse function on the Bier sphere $Bier(K)$ of an associated simplicial complex $K$. We illustrate the use of “standard discrete Morse functions” on generalized chessboard complexes by proving a connectivity result for chessboard complexes with multiplicities. Applications include new Tverberg-Van Kampen-Flores type results for $j$-wise disjoint partitions of a simplex.
Keywords: chessboard complexes, discrete Morse theorey, bottleneck theorem, Tverberg-Van Kampen-Flores theorems.
@article{CHEB_2020_21_2_a15,
     author = {D. Joji\'c and G. Panina and S. T. Vre\'cica and R. T. \v{Z}ivaljevi\'c},
     title = {Generalized chessboard complexes and discrete {Morse} theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {207--227},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a15/}
}
TY  - JOUR
AU  - D. Jojić
AU  - G. Panina
AU  - S. T. Vrećica
AU  - R. T. Živaljević
TI  - Generalized chessboard complexes and discrete Morse theory
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 207
EP  - 227
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a15/
LA  - en
ID  - CHEB_2020_21_2_a15
ER  - 
%0 Journal Article
%A D. Jojić
%A G. Panina
%A S. T. Vrećica
%A R. T. Živaljević
%T Generalized chessboard complexes and discrete Morse theory
%J Čebyševskij sbornik
%D 2020
%P 207-227
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a15/
%G en
%F CHEB_2020_21_2_a15
D. Jojić; G. Panina; S. T. Vrećica; R. T. Živaljević. Generalized chessboard complexes and discrete Morse theory. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 207-227. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a15/

[1] C.A. Athanasiadis, “Decompositions and connectivity of matching and chessboard complexes”, Discrete Comput. Geom., 31 (2004), 395–403 | DOI | MR | Zbl

[2] S. Ault, Z. Fiedorowicz, “Symmetric homology of algebras”, Algebr. Geom. Topol., 10:4 (2010), 2343–2408 ; (5 Nov 2007), arXiv: 0708.1575v54 [math.AT] | DOI | MR | Zbl

[3] S. Ault, “Symmetric homology of algebras”, Algebr. Geom. Topol., 10:4 (2010), 2343–2408 | DOI | MR | Zbl

[4] T. Bier, A remark on Alexander duality and the disjunct join, Unpublished, 1992

[5] A. Björner, L. Lovász, S.T. Vrećica, R. T. Živaljević, “Chessboard complexes and matching complexes”, J. London Math. Soc. (2), 49 (1994), 25–39 | DOI | MR

[6] A. Bjorner, A. Paffenholz, J. Sjostrand, G.M. Ziegler, “Bier spheres and posets”, Discrete Comput. Geom., 34:1 (2005), 71–86 | DOI | MR | Zbl

[7] P.V.M. Blagojević, F. Frick, G.M. Ziegler, “Tverberg plus constraints”, Bull. Lond. Math. Soc., 46 (2014), 953–967 | DOI | MR | Zbl

[8] P.V.M. Blagojević, B. Matschke, G.M. Ziegler, “Optimal bounds for the colored Tverberg problem”, J. Eur. Math. Soc., 17 (2015), 739–754 | DOI | MR | Zbl

[9] M.K. Chari, “On discrete Morse functions and combinatorial decompositions”, Discrete Math., 217:1–3 (2000), 101–113 | DOI | MR | Zbl

[10] S. Lj. Čukić, E. Delucchi, “Simplicial shellable spheres via combinatorial blowups”, Proc. Amer. Math. Soc., 135:8 (2007), 2403–2414 | DOI | MR | Zbl

[11] J. Edmonds, D.R. Fulkerson, “Bottleneck extrema”, Journal of Combinatorial Theory, 8 (1970), 299–306 | DOI | MR | Zbl

[12] Z. Fiedorowicz, Question about a simplicial complex, Algebraic Topology Discussion List, (maintained by Don Davis) http://www.lehigh.edu/d̃md1/zf93

[13] R. Forman, “A user's guide to discrete Morse theory”, Sém. Lothar. Combin., 48 (2002), B48c | MR | Zbl

[14] F. Frick, On affine Tverberg-type results without continuous generalization, arXiv: 1702.05466 [math.CO]

[15] J. Friedman, P. Hanlon, “On the Betti numbers of chessboard complexes”, J. Algebraic Combin., 8 (1998), 193–203 | DOI | MR | Zbl

[16] P.F. Garst, Cohen-Macaulay complexes and group actions, Ph.D. Thesis, Univ. of Wisconsin-Madison, 1979 | MR

[17] S. Hell, “Tverberg's theorem with constraints”, J. Combinatorial Theory, Ser. A, 115 (2008), 1402–1406 | DOI | MR

[18] D. Jojić, I. Nekrasov, G. Panina, R. Živaljević, “Alexander r-tuples and Bier complexes”, Publ. Inst. Math. (Beograd) (N.S.), 104(118) (2018), 1–22 | DOI | MR

[19] D. Jojić, W. Marzantowicz, S.T. Vrećica, R.T. Živaljević, Topology of unavoidable complexes, arXiv: 1603.08472 [math.AT] | MR

[20] D. Jojić, G. Panina, R. Živaljević, A Tverberg type theorem for collectively unavoidable complexes, Israel J. Math., arXiv: 1812.00366 [math.CO] | MR

[21] D. Jojić, G. Panina, R. Živaljević, Splitting necklaces, with constraints, arXiv: 1907.09740 [math.CO]

[22] D. Jojić, S.T. Vrećica, R.T. Živaljević, “Multiple chessboard complexes and the colored Tverberg problem”, J. Combin. Theory Ser. A, 145 (2017), 400–425 | DOI | MR | Zbl

[23] D. Jojić, S.T. Vrećica, R.T. Živaljević, “Symmetric multiple chessboard complexes and a new theorem of Tverberg type”, J. Algebraic Combin., 46 (2017), 15–31 | DOI | MR | Zbl

[24] D. Jojić, S.T. Vrećica, R.T. Živaljević, Topology and combinatorics of unavoidable complexes, arXiv: 1603.08472v1 [math.AT] | MR

[25] J. Jonsson, Simplicial Complexes of Graphs, Lecture Notes in Mathematics, 1928, Springer, 2008 | DOI | MR | Zbl

[26] J. Jonsson, “Exact sequences for the homology of the matching complex”, Journal of Combinatorial Theory, Series A, 115:8 (2008), 1504–1526 | DOI | MR | Zbl

[27] J. Jonsson, “On the $3$-torsion part of the homology of the chessboard complex”, Annals of Combinatorics, 14:4 (2010), 487–505 | DOI | MR | Zbl

[28] D.B. Karaguezian, V. Reiner, M.L. Wachs, “Matching Complexes, Bounded Degree Graph Complexes, and Weight Spaces of GL-Complexes”, J. Algebra, 239 (2001), 77–92 | DOI | MR

[29] D. Kozlov, Combinatorial Algebraic Topology, Algorithms and Computation in Mathematics, Springer, 2008 | DOI | MR | Zbl

[30] M. de Longueville, “Bier spheres and barycentric subdivision”, J. Comb. Theory Ser. A, 105 (2004), 355–357 | DOI | MR | Zbl

[31] J. Matoušek, Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry, Universitext, Springer-Verlag, Heidelberg, 2003 ; Corrected 2nd printing, 2008 | MR | Zbl

[32] V. Reiner, J. Roberts, “Minimal resolutions and homology of chessboard and matching complexes”, J. Algebraic Combin., 11 (2000), 135–154 | DOI | MR | Zbl

[33] J. Shareshian, M. L. Wachs, “Torsion in the matching complex and chessboard complex”, Advances in Mathematics, 212 (2007), 525–570 | DOI | MR | Zbl

[34] Volovikov A.Y., “On the van Kampen-Flores theorem”, Math. Notes, 59 (1996), 477–481 | DOI | MR | Zbl

[35] S. Vrećica, R. Živaljević, “New cases of the colored Tverberg theorem”, Jerusalem Combinatorics'93, Contemp. Math., 178, eds. H. Barcelo, G. Kalai, A.M.S., 1994, 325–334 | DOI | MR | Zbl

[36] S. Vrećica, R. Živaljević, “Cycle-free chessboard complexes and symmetric homology of algebras”, European J. Combinatorics, 30 (2009), 542–554 | DOI | MR | Zbl

[37] S. Vrećica, R. Živaljević, “Chessboard complexes indomitable”, J. Combin. Theory Ser. A, 118 (2011), 2157–2166 | DOI | MR | Zbl

[38] M.L. Wachs, “Topology of matching, chessboard, and general bounded degree graph complexes, Dedicated to the memory of Gian-Carlo Rota”, Algebra Universalis, 49 (2003), 345–385 | DOI | MR | Zbl

[39] G.M. Ziegler, “Shellability of chessboard complexes”, Israel J. Math., 87 (1994), 97–110 | DOI | MR | Zbl

[40] R.T. Živaljević, S. T. Vrećica, “The colored Tverberg's problem and complexes of injective functions”, J. Combin. Theory Ser. A, 61 (1992), 309–318 | DOI | MR | Zbl

[41] R.T. Živaljević, “Topological methods in discrete geometry”, Chapter 21, Handbook of Discrete and Computational Geometry, third ed., eds. J.E. Goodman, J. O'Rourke, C. D. Tóth, CRC Press LLC, Boca Raton, FL, 2017 | MR

[42] R. Živaljević., “User's guide to equivariant methods in combinatorics. I; II”, Publ. Inst. Math. (Beograd) (N.S.), 59:73 (1996), 114–130 ; 64:78 (1998), 107–132 | MR | Zbl | MR | Zbl