Generalized chessboard complexes and discrete Morse theory
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 207-227

Voir la notice de l'article provenant de la source Math-Net.Ru

Chessboard complexes and their generalizations, as objects, and Discrete Morse theory, as a tool, are presented as a unifying theme linking different areas of geometry, topology, algebra and combinatorics. Edmonds and Fulkerson bottleneck (minmax) theorem is proved and interpreted as a result about a critical point of a discrete Morse function on the Bier sphere $Bier(K)$ of an associated simplicial complex $K$. We illustrate the use of “standard discrete Morse functions” on generalized chessboard complexes by proving a connectivity result for chessboard complexes with multiplicities. Applications include new Tverberg-Van Kampen-Flores type results for $j$-wise disjoint partitions of a simplex.
Keywords: chessboard complexes, discrete Morse theorey, bottleneck theorem, Tverberg-Van Kampen-Flores theorems.
@article{CHEB_2020_21_2_a15,
     author = {D. Joji\'c and G. Panina and S. T. Vre\'cica and R. T. \v{Z}ivaljevi\'c},
     title = {Generalized chessboard complexes and discrete {Morse} theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {207--227},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a15/}
}
TY  - JOUR
AU  - D. Jojić
AU  - G. Panina
AU  - S. T. Vrećica
AU  - R. T. Živaljević
TI  - Generalized chessboard complexes and discrete Morse theory
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 207
EP  - 227
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a15/
LA  - en
ID  - CHEB_2020_21_2_a15
ER  - 
%0 Journal Article
%A D. Jojić
%A G. Panina
%A S. T. Vrećica
%A R. T. Živaljević
%T Generalized chessboard complexes and discrete Morse theory
%J Čebyševskij sbornik
%D 2020
%P 207-227
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a15/
%G en
%F CHEB_2020_21_2_a15
D. Jojić; G. Panina; S. T. Vrećica; R. T. Živaljević. Generalized chessboard complexes and discrete Morse theory. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 207-227. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a15/