Gromov--Hausdorff distances to simplexes and some applications to discrete optimisation
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 169-189

Voir la notice de l'article provenant de la source Math-Net.Ru

Relations between Gromov–Hausdorff distance and Discrete Optimisation problems are discussed. We use the Gromov–Hausdorff distances to single-distance metric space for solving the following problems: calculation of lengths of minimum spanning tree edges of a finite metric space; generalised Borsuk problem; chromatic number and clique cover number of a simple graph calculation problems.
Keywords: Gromov–Hausdorff distance, minimum spanning tree, Borsuk problem, chromatic number, clique covering, metric geometry, discrete optimisation.
@article{CHEB_2020_21_2_a13,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Gromov--Hausdorff distances to simplexes and some applications to discrete optimisation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {169--189},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a13/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Gromov--Hausdorff distances to simplexes and some applications to discrete optimisation
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 169
EP  - 189
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a13/
LA  - en
ID  - CHEB_2020_21_2_a13
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Gromov--Hausdorff distances to simplexes and some applications to discrete optimisation
%J Čebyševskij sbornik
%D 2020
%P 169-189
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a13/
%G en
%F CHEB_2020_21_2_a13
A. O. Ivanov; A. A. Tuzhilin. Gromov--Hausdorff distances to simplexes and some applications to discrete optimisation. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 169-189. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a13/