Optimal feedback control for one motion model of a nonlinearly viscous fluid
Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 144-158

Voir la notice de l'article provenant de la source Math-Net.Ru

An optimal control problem with a feedback is considered for an initial boundary problem describing a motion of non-linearly viscous liquid. An existence of an optimal solution minimising a given quality functional is proved. A topological approximation approach to study of mathematical problems of hydrodynamics is used in the proof of existence of an optimal solution.
Keywords: optimal control with feedback, existence theorem, nonlinearly viscous fluid.
@article{CHEB_2020_21_2_a11,
     author = {V. G. Zvyagin and A. V. Zvyagin and N. M. Hong},
     title = {Optimal feedback control for one motion model of a nonlinearly viscous fluid},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {144--158},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a11/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - A. V. Zvyagin
AU  - N. M. Hong
TI  - Optimal feedback control for one motion model of a nonlinearly viscous fluid
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 144
EP  - 158
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a11/
LA  - ru
ID  - CHEB_2020_21_2_a11
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A A. V. Zvyagin
%A N. M. Hong
%T Optimal feedback control for one motion model of a nonlinearly viscous fluid
%J Čebyševskij sbornik
%D 2020
%P 144-158
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a11/
%G ru
%F CHEB_2020_21_2_a11
V. G. Zvyagin; A. V. Zvyagin; N. M. Hong. Optimal feedback control for one motion model of a nonlinearly viscous fluid. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 144-158. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a11/