Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_2_a11, author = {V. G. Zvyagin and A. V. Zvyagin and N. M. Hong}, title = {Optimal feedback control for one motion model of a nonlinearly viscous fluid}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {144--158}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a11/} }
TY - JOUR AU - V. G. Zvyagin AU - A. V. Zvyagin AU - N. M. Hong TI - Optimal feedback control for one motion model of a nonlinearly viscous fluid JO - Čebyševskij sbornik PY - 2020 SP - 144 EP - 158 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a11/ LA - ru ID - CHEB_2020_21_2_a11 ER -
V. G. Zvyagin; A. V. Zvyagin; N. M. Hong. Optimal feedback control for one motion model of a nonlinearly viscous fluid. Čebyševskij sbornik, Tome 21 (2020) no. 2, pp. 144-158. http://geodesic.mathdoc.fr/item/CHEB_2020_21_2_a11/
[1] Litvinov V. G., Motion of nonlinear viscous fluid, Nauka, M., 1982 | MR
[2] Sobolevskii P. E., “The Existence of Solutions of a Mathematical Model of a Nonlinear Viscous Fluid”, Doklady Akademii Nauk SSSR, 285 (1985), 44–48 | MR
[3] Dmitrienko V. T., Zvyagin V. G., “The topological degree method for equations of the Navier–Stokes type”, Abstract and Applied Analysis, 2:1 (1997), 1–45 | DOI | MR | Zbl
[4] Zvyagin V. G., Treasurer M. V., “Attractors of an autonomous model of a nonlinearly viscous fluid”, Doklady RAS, 2020
[5] Lions J. L., Optimal control of systems governed by partial differential equations, Springer, Berlin, 1971 | MR | Zbl
[6] Abergel F., Temam R., “On some control problems in fluid mechanics”, Theor. Comput. Fluid Dyn., 1:6 (1990), 303–325 | DOI | Zbl
[7] Fursikov A. V., Optimal Control of Distributed Systems. Theory and Applications, Transl. Math. Monogr., 187, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[8] Zvyagin V., Obukhovskii V., Zvyagin A., “On inclusions with multivalued operators and their applications to some optimization problems”, J. Fixed Point Theory and Appl., 16 (2014), 27–82 | DOI | MR | Zbl
[9] Zvyagin A. V., “Optimal feedback control for a thermoviscoelastic model of Voigt fluid motion”, Dokl. Math., 93:3 (2016), 270–272 | DOI | MR | Zbl
[10] Zvyagin A. V., “Optimal feedback control for Leray and Navier-Stokes alpha models”, Dokl. Math., 99:3 (2019), 299–302 | DOI | MR | Zbl
[11] Zvyagin V. G., “Topological approximation approach to study of mathematical problems of hydrodynamics”, J. Math. Sci., 201:6 (2014), 830–858 | DOI | MR | Zbl
[12] Zvyagin V. G., Turbin M. V., Mathematical problems in the hydrodynamics of viscoelastic media, KRASAND, M., 2012
[13] Temam R., Navier-Stokes Equation: Theory and Numerical Analysis, North-Holland, 1977 | MR
[14] Zvyagin V. G., Dmitrienko V. T., Topological Approximation Approach to the Study of Hydrodynamical Problems. The Navier-Stokes System, URSS Editorial, M., 2004 (in Russian)
[15] Ficker G., Existence Theorems in the Theory of Elasticity, Russian translation, Mir, M., 1974
[16] Gajewski H., Gröger K., Zacharias K., Nichtlineare operatorgleichungen und operator differentialgleichungen, Akad Verlag, Berlin, 1974 | MR
[17] Kamenskii M., Obukhovskii V., Zecca P., Condensing multivalued maps and semilinear differential inclusions in Banach spaces, Walter de Gruyter, Berlin, 2001 | MR