Inverse problem for a monoid with an exponential sequence of
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 165-185
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, for an arbitrary monoid ${M(PE)}$ with an exponential sequence of primes $PE$ of type $q$, the inverse problem is solved, that is, finding the asymptotic for the distribution function of elements of the monoid ${M(PE)}$, based on the asymptotic distribution of primes of the sequence of primes $PE$ of type $q$.
To solve this problem, we introduce the concept of an arbitrary exponential sequence of natural numbers of the type $q$ and consider the monoid generated by this sequence. Using two homomorphisms of such monoids, the density distribution problem is reduced to the additive Ingham problem.
It is shown that the concept of power density does not work for this class of monoids. A new concept of $C$ logarithmic $\theta$-power density is introduced.
It is shown that any monoid ${M(PE)}$ for an arbitrary exponential sequence of primes $PE$ of type $q$ has $C$ logarithmic $\theta$-power density with $C=\pi\sqrt{\frac{2}{3\ln q}}$ and $\theta=\frac{1}{2}$.
Keywords:
Riemann zeta function, Dirichlet series, zeta function of the monoid of natural
numbers, Euler product, exponential sequence of primes, $C$ logarithmic $\theta$-power density.
@article{CHEB_2020_21_1_a9,
author = {N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
title = {Inverse problem for a monoid with an exponential sequence of},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {165--185},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a9/}
}
TY - JOUR AU - N. N. Dobrovol'skii AU - I. Yu. Rebrova AU - N. M. Dobrovol'skii TI - Inverse problem for a monoid with an exponential sequence of JO - Čebyševskij sbornik PY - 2020 SP - 165 EP - 185 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a9/ LA - ru ID - CHEB_2020_21_1_a9 ER -
N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Inverse problem for a monoid with an exponential sequence of. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 165-185. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a9/