Inverse problem for a monoid with an exponential sequence of
Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 165-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, for an arbitrary monoid ${M(PE)}$ with an exponential sequence of primes $PE$ of type $q$, the inverse problem is solved, that is, finding the asymptotic for the distribution function of elements of the monoid ${M(PE)}$, based on the asymptotic distribution of primes of the sequence of primes $PE$ of type $q$. To solve this problem, we introduce the concept of an arbitrary exponential sequence of natural numbers of the type $q$ and consider the monoid generated by this sequence. Using two homomorphisms of such monoids, the density distribution problem is reduced to the additive Ingham problem. It is shown that the concept of power density does not work for this class of monoids. A new concept of $C$ logarithmic $\theta$-power density is introduced. It is shown that any monoid ${M(PE)}$ for an arbitrary exponential sequence of primes $PE$ of type $q$ has $C$ logarithmic $\theta$-power density with $C=\pi\sqrt{\frac{2}{3\ln q}}$ and $\theta=\frac{1}{2}$.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product, exponential sequence of primes, $C$ logarithmic $\theta$-power density.
@article{CHEB_2020_21_1_a9,
     author = {N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {Inverse problem for a monoid with an exponential sequence of},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {165--185},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a9/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - Inverse problem for a monoid with an exponential sequence of
JO  - Čebyševskij sbornik
PY  - 2020
SP  - 165
EP  - 185
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a9/
LA  - ru
ID  - CHEB_2020_21_1_a9
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T Inverse problem for a monoid with an exponential sequence of
%J Čebyševskij sbornik
%D 2020
%P 165-185
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a9/
%G ru
%F CHEB_2020_21_1_a9
N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Inverse problem for a monoid with an exponential sequence of. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 165-185. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a9/

[1] E. Bomberi, A. Gosh, “Vokrug funktsii Devenporta-Kheilbronna”, UMN, 66:2(398) (2011), 15–66

[2] B. M. Bredikhin, “Ostatochnyi chlen v asimptoticheskoi formule dlya funktsii $ \nu_G(x)$”, Izv. vuzov. Matem., 6 (1960), 40–49

[3] B. M. Bredikhin, “Elementarnoe reshenie obratnykh zadach o bazisakh svobodnykh polugrupp”, Matem. sb., 50(92):2 (1960), 221–232

[4] B. M. Bredikhin, “Svobodnye chislovye polugruppy so stepennymi plotnostyami”, Dokl. AN SSSR, 118:5 (1958), 855–857

[5] B. M. Bredikhin, “O stepennykh plotnostyakh nekotorykh podmnozhestv svobodnykh polugrupp”, Izv. vuzov. Matem., 3 (1958), 24–30

[6] B. M. Bredikhin, “Svobodnye chislovye polugruppy so stepennymi plotnostyami”, Matem. sb., 46(88):2 (1958), 143–158

[7] B. M. Bredikhin, “Primer konechnogo gomomorfizma s ogranichennoi summatornoi funktsiei”, UMN, 11:4(70) (1956), 119–122

[8] B. M. Bredikhin, “Nekotorye voprosy teorii kharakterov kommutativnykh polugrupp”, Trudy 3-go Vsesoyuzn. matem. s'ezda, v. I, Izd. AN SSSR, M., 1956, 3

[9] B. M. Bredikhin, “O summatornykh funktsiyakh kharakterov chislovykh polugrupp”, DAN, 94 (1954), 609–612

[10] B. M. Bredikhin, “O kharakterakh chislovykh polugrupp s dostatochno redkoi bazoi”, DAN, 90 (1953), 707–710

[11] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fiz-matlit, M., 1994, 376 pp.

[12] A. Gurvits, R. Kurant, Teoriya funktsii, Nauka, M., 1968, 618 pp.

[13] S. S. Demidov, E. A. Morozova, V. N. Chubarikov, I. Yu. Rebrova, I. N. Balaba, N. N. Dobrovolskii, N. M. Dobrovolskii, L. P. Dobrovolskaya, A. V. Rodionov, O. A. Pikhtilkova, “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sb., 18:4 (2017), 6–85

[14] N. N. Dobrovolskii, “Dzeta-funktsiya monoidov naturalnykh chisel s odnoznachnym razlozheniem na prostye mnozhiteli”, Chebyshevskii sb., 18:4 (2017), 187–207

[15] N. N. Dobrovolskii, “O monoidakh naturalnykh chisel s odnoznachnym razlozheniem na prostye elementy”, Chebyshevskii sb., 19:1 (2018), 79–105

[16] N. N. Dobrovolskii, “Dzeta-funktsiya monoidov s zadannoi abstsissoi absolyutnoi skhodimosti”, Chebyshevskii sb., 19:2 (2018), 142–150

[17] N. N. Dobrovolskii, “Odna modelnaya dzeta-funktsiya monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 148–163

[18] N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, I. N. Balaba, I. Yu. Rebrova, “Gipoteza o zagraditelnom ryade dlya dzeta-funktsii monoidov s eksponentsialnoi posledovatelnostyu prostykh”, Chebyshevskii sb., 19:1 (2018), 106–123

[19] N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, I. N. Balaba, I. Yu. Rebrova, “Algebra ryadov Dirikhle monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 180–196

[20] N. N. Dobrovolskii, N. M. Dobrovolskii, I. Yu. Rebrova, A. V. Rodionov, “Monoidy naturalnykh chisel v teoretiko-chislovom metode v priblizhennom analize”, Chebyshevckii sbornik, 20:1 (2019), 164–179

[21] N. N. Dobrovolskii, A. O. Kalinina, M. N. Dobrovolskii, N. M. Dobrovolskii, “O kolichestve prostykh elementov v nekotorykh monoidakh naturalnykh chisel”, Chebyshevckii sbornik, 19:2 (2018), 123–141

[22] N. N. Dobrovolskii, A. O. Kalinina, M. N. Dobrovolskii, N. M. Dobrovolskii, “O monoide kvadratichnykh vychetov”, Chebyshevckii sbornik, 19:3 (2018), 95–108

[23] A. G. Postnikov, Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971, 416 pp.

[24] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, M., 1952, 407 pp.

[25] E. Trost, Prostye chisla, Fizmatlit, M., 1959, 136 pp.

[26] K. Chandrasekkharan, Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974, 188 pp.

[27] N. G. Chudakov, Vvedenie v teoriyu $L$-funktsii Dirikhle, OGIZ, M.–L., 1947, 204 pp.

[28] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185