Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2020_21_1_a8, author = {E. I. Deza and B. Mhanna}, title = {On special properties of some quasi-metrics}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {145--164}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a8/} }
E. I. Deza; B. Mhanna. On special properties of some quasi-metrics. Čebyševskij sbornik, Tome 21 (2020) no. 1, pp. 145-164. http://geodesic.mathdoc.fr/item/CHEB_2020_21_1_a8/
[1] Deza M.M., Deza E.I., Dutour Sikirić M., “Polyhedral structures associated with quasi-metrics”, Chebyshevskii sbornik, 16:2 (2015), 79–92 | MR | Zbl
[2] Kudryashov B.D., Information Theory, Piter, StPb., 2009
[3] Potapov V., Information Theory. Coding of discrete probabilistic sources, NSU center, Novosibirsk, 1999
[4] Harari F., Graph Theory, URSS, M., 2003
[5] Shannon K., Works on Information theory and Cybernetics, IL, M., 1963
[6] Catral M., Neumann M., Xu H., “Proximity in group inverses of M-matrices and inverses of diagonally dominant M-matrices”, Linear Algebra and its Applications, 409 (2005), 32–50 | DOI | MR | Zbl
[7] Chebotarev P., A graph theoretic interpretation of the mean first passage times, 2007, arXiv: math.PR/0701359
[8] Chebotarev P., “Studying new classes of graph metrics”, Proceedings of the SEE Conference "Geometric Science of Information", GSI-2013, Lecture Notes in Computer Science, 8085, eds. F. Nielsen, F. Barbaresco, 2013, 207–214 | DOI | MR | Zbl
[9] Chebotarev P., Agaev R., “Forest matrices around the Laplacian matrix”, Linear Algebra and its Applications, 356 (2002), 253–274 | DOI | MR | Zbl
[10] Chebotarev P., Deza E., “Hitting time quasi-metric and its forest representation”, Optimization Letters, 14 (2020), 291–307 | DOI | MR | Zbl
[11] Chebotarev P. Y., Shamis E. V., “On proximity measures for graph vertices”, Automation and Remote Control, 59 (1998), 1443–1459 | MR | Zbl
[12] Chebotarev P., Shamis E., Matrix forest theorems, 2006, arXiv: 0602575v1 | MR
[13] Chebotarev P., Shamis E., The forest metric for graph verticies, arXiv: 060257v1 | MR
[14] Deza E., Deza M., Dutour Sikirić, Generalizations of Finite Metrics and Cuts, World Scientific, 2016 | MR | Zbl
[15] Deza M., Deza E., “Cones of partial metrics”, Contributions to Discrete Mathematics, 6 (2011), 26–47 | MR | Zbl
[16] Deza M. M., Deza E., Encyclopedia of Distances, Springer, Berlin–Heidelberg, 2016 | MR | Zbl
[17] Deza M., Deza E., Vidali J., “Cones of weighted and partial metrics”, Advances in Algebraic Structures, Proceedings of the Internat. Conference on Algebra (2010), 2012, 177–197 | MR | Zbl
[18] Hausdorff F., Grundzuge der Mengenlehre, Walter de Gruyter, Berlin, 1927 | MR
[19] Kirkland S. J., Neumann M., Group inverses of M-matrices and their applications, CRC Press, 2012 | MR
[20] Klein D., Zhu H., “Distances and volumina for graphs”, Journal of Mathematical Chemistry, 23 (1998), 179–195 | DOI | MR | Zbl
[21] Leighton T., Rivest R. L., The Markov chain tree theorem, Computer Science Technical Report MIT/LCS/TM-249, Laboratory of Computer Science, MIT, Cambridge, Mass., 1983
[22] Leighton T., Rivest R. L., “Estimating a probability using finite memory”, IEEE Transactions on Information Theory, 32 (1986), 733–742 | DOI | Zbl
[23] Meyer C. D. Jr., “The role of the group generalized inverse in the theory of finite Markov chains”, SIAM Review, 17 (1975), 443–464 | DOI | MR | Zbl
[24] Wentzell A. D., Freidlin M. I., “On small random perturbations of dynamical systems”, Russian Mathematical Surveys, 25 (1970), 1–55 | MR
[25] Wilson W., “On quasi-metric spaces”, American Journal of Mathematics, 53 (1931), 675–684 | DOI | MR